Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Ronald M. Dotzel"'
Autor:
Ronald M. Dotzel, Tej Bahadur Singh
Publikováno v:
Proceedings of the American Mathematical Society. 123:3581-3585
In this paper, we consider actions of G = Z p G = {Z_p} (with p an odd prime) on spaces X which are of cohomology type (0, 0) (i.e., have the mod - p \bmod \text {-}p cohomology of the one-point union of an n-sphere, a 2n-sphere and a a 3n-sphere, n
Autor:
Ronald M. Dotzel
Publikováno v:
Proceedings of the American Mathematical Society. 121:961-965
If Y is a homotopy representation of the finite group G of order n and X is a finite G-CW complex such that, for each subgroup H of G, H ∗ ( X H ; Z n ) = H ∗ ( Y H ; Z n ) {H_ \ast }({X^H};{\mathbb {Z}_n}) = {H_ \ast }({Y^H};{\mathbb {Z}_n}) the
Autor:
Ronald M. Dotzel, Tej B. Singh
Publikováno v:
Proceedings of the American Mathematical Society. 123:3581
Publikováno v:
Proceedings of the American Mathematical Society; Mar2001, Vol. 129 Issue 3, p921-930, 10p
Autor:
Ronald M. Dotzel, Tej B. Singh
Publikováno v:
Proceedings of the American Mathematical Society. 113:875
Autor:
Tej Bahadur Singh, Ronald M. Dotzel
Publikováno v:
Proceedings of the American Mathematical Society. 113:875-875
A space X that has the cohomology of the one-point union P2(n) 53n or Sn VS2n VS3n is said to have cohomology type (a, 0) . Here we construct examples of free Zp actions (p an odd prime) on certain of these spaces and give a complete description of p
Autor:
Gary C. Hamrick, Ronald M. Dotzel
Publikováno v:
Inventiones Mathematicae. 62:437-442
When an arbitraryp-groupG acts on a ℤn-homologyn-sphereX, it is proved here that the dimension functionn:S(G)→ℤ(S(G) is the set of subgroups ofG), defined byn(H)=dimXH, (dim here is cohomological dimension) is realised by a real representation
Autor:
Ronald M. Dotzel
Publikováno v:
Group Actions on Manifolds. :83-89
Autor:
Ronald M. Dotzel
Publikováno v:
Proceedings of the American Mathematical Society. 100:159-163
If G G is a finite Abelian group acting as a Z ( P ) {{\mathbf {Z}}_{(\mathcal {P})}} -homology n n -sphere X X (where P \mathcal {P} is the set of primes dividing | G | ) |G|) , then there is an integer valued function n ( , G ) n(,G) defined on the
Autor:
Ronald M. Dotzel
Publikováno v:
Proceedings of the American Mathematical Society. 83:163-166
The Borel formula is extended to an identity covering actions of arbitrary Abelian p p -groups. Specifically, suppose G G is an Abelian p p -group which acts on a finite CW {\text {CW}} -complex X X which is a Z p {Z_p} -homology n n -sphere. Each X