Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Ronald A. Zúñiga Rojas"'
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a8449f6bb6ecae875a183bcd9d24cc5c
https://doi.org/10.1007/978-3-030-67829-6_1
https://doi.org/10.1007/978-3-030-67829-6_1
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc0e364135991ba95caf3cce5a1276db
https://doi.org/10.1007/978-3-030-67829-6_5
https://doi.org/10.1007/978-3-030-67829-6_5
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af23c000ab98ae740bc8ed7b5844898c
https://doi.org/10.1007/978-3-030-67829-6_2
https://doi.org/10.1007/978-3-030-67829-6_2
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0456e60673a36a94f450c424d8a452d8
https://doi.org/10.1007/978-3-030-67829-6_6
https://doi.org/10.1007/978-3-030-67829-6_6
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
In this chapter, we recall Mumford’s construction of a moduli space of semistable holomorphic vector bundles over Riemann surfaces by using geometric invariant theory, and the notion of the Harder-Narasimhan filtration as the main tool to understan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::93664930d9f381d65af4d34200bcf058
https://doi.org/10.1007/978-3-030-67829-6_4
https://doi.org/10.1007/978-3-030-67829-6_4
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
The purpose of Geometric Invariant Theory (abbreviated GIT) is to provide a way to define a quotient of an algebraic variety X by the action of a reductive complex algebraic group G with an algebro-geometric structure. In this chapter we present a sk
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c95139185a189e01dd36e5b64a8b6b2b
https://doi.org/10.1007/978-3-030-67829-6_3
https://doi.org/10.1007/978-3-030-67829-6_3
Publikováno v:
SpringerBriefs in Mathematics ISBN: 9783030678289
SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
This survey intends to present the basic notions of Geometric Invariant Theory (GIT) through its paradigmatic application in the construction of the moduli space of holomorphic vector bundles. Special attention is paid to the notion of stability from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df19fe5858b8dd220819bd0ef97323d4
https://doi.org/10.1007/978-3-030-67829-6
https://doi.org/10.1007/978-3-030-67829-6
We consider the problem of finding the limit at infinity (corresponding to the downward Morse flow) of a Higgs bundle in the nilpotent cone under the natural $\mathbb{C}^*$-action on the moduli space. For general rank we provide an answer for Higgs b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6450ed68506e855dfad710382a018c4
http://arxiv.org/abs/2006.08837
http://arxiv.org/abs/2006.08837
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan
Autor:
Ronald A. Zúñiga Rojas
Publikováno v:
Revista de Matemática: Teoría y Aplicaciones, vol.26(2), pp.197-214
Kérwá
Universidad de Costa Rica
instacron:UCR
Revista de Matemática Teoría y Aplicaciones, Volume: 26, Issue: 2, Pages: 197-214, Published: DEC 2019
Kérwá
Universidad de Costa Rica
instacron:UCR
Revista de Matemática Teoría y Aplicaciones, Volume: 26, Issue: 2, Pages: 197-214, Published: DEC 2019
Considering a compact Riemann surface of genus greater than two, a Higgs~bundle is a pair composed of a holomorphic bundle over the Riemann surface, joint with an auxiliar vector field, so-called Higgs field. This theory started around thirty years a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::52ec274d54fbbc61d3651b1085b0e668
https://revistas.ucr.ac.cr/index.php/matematica/article/view/38315
https://revistas.ucr.ac.cr/index.php/matematica/article/view/38315