Zobrazeno 1 - 10
of 93
pro vyhledávání: '"Romon, Pascal"'
Publikováno v:
In Discrete Applied Mathematics 31 December 2023 341:270-289
Autor:
Bobenko, Alexander I., Romon, Pascal
The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an iso
Externí odkaz:
http://arxiv.org/abs/1705.01053
Autor:
Loisel, Benoît, Romon, Pascal
Publikováno v:
Axioms 3, 1 (2014) 119-139
The problem of defining correctly geometric objects such as the curvature is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named i
Externí odkaz:
http://arxiv.org/abs/1402.0644
Autor:
Romon, Pascal, Roth, Julien
Publikováno v:
Pure and Applied Differential Geometry, Proceedings of the conference PADGE 2012, Shaker Verlag, Aachen, pp261-282 (2013)
In the literature, two approaches to the Weierstrass representation formula using spinors are known, one explicit, going back to Kusner & Schmitt, and generalized by Konopelchenko and Taimanov, and one abstract due to Friedrich, Bayard, Lawn and Roth
Externí odkaz:
http://arxiv.org/abs/1309.0457
Autor:
Anciaux, Henri, Romon, Pascal
It is a classical fact that the cotangent bundle $T^* \M$ of a differentiable manifold $\M$ enjoys a canonical symplectic form $\Omega^*$. If $(\M,\j,g,\omega)$ is a pseudo-K\"ahler or para-K\"ahler $2n$-dimensional manifold, we prove that the tangen
Externí odkaz:
http://arxiv.org/abs/1301.4638
Autor:
Abakumov, Evgeny, Beaulieu, Anne, Blanchard, François, Fradelizi, Matthieu, Gozlan, Nathaël, Host, Bernard, Jeantheau, Thiery, Kobylanski, Magdalena, Lecué, Guillaume, Martinez, Miguel, Meyer, Mathieu, Mourgues, Marie-Hélène, Portal, Frédéric, Ribaud, Francis, Roberto, Cyril, Romon, Pascal, Roth, Julien, Samson, Paul-Marie, Vandekerkhove, Pierre, Youssfi, Abdellah
Publikováno v:
Journal of Mathematical Analysis and applications 399 (2013) 576-585
We give estimates on the logarithmic Sobolev constant of some finite lamplighter graphs in terms of the spectral gap of the underlying base. Also, we give examples of application.
Externí odkaz:
http://arxiv.org/abs/1011.1764
Publikováno v:
J. Geom. Phys. 61 (2011) 237--247
Given an oriented Riemannian surface $(\Sigma, g)$, its tangent bundle $T\Sigma$ enjoys a natural pseudo-K\"{a}hler structure, that is the combination of a complex structure $\J$, a pseudo-metric $\G$ with neutral signature and a symplectic structure
Externí odkaz:
http://arxiv.org/abs/0807.1387
Autor:
McIntosh, Ian, Romon, Pascal
Publikováno v:
Differ.Geom.Appl.29:125-146,2011
This article determines the spectral data, in the integrable systems sense, for all weakly conformally immersed Hamiltonian stationary Lagrangian in $\R^4$. This enables us to describe their moduli space and the locus of branch points of such an imme
Externí odkaz:
http://arxiv.org/abs/0707.1767
Autor:
Anciaux, Henri, Romon, Pascal
Publikováno v:
Bulletin Brazilian Mathematical Society 40, 3 (2009) 341-369
We study those Lagrangian surfaces in complex Euclidean space which are foliated by circles or by straight lines. The former, which we call cyclic, come in three types, each one being described by means of, respectively, a planar curve, a Legendrian
Externí odkaz:
http://arxiv.org/abs/math/0703645
We study Lagrangian submanifolds foliated by (n-1)-spheres in R^2n for n>2. We give a parametrization valid for such submanifolds, and refine that description when the submanifold is special Lagrangian, self-similar or Hamiltonian stationary. In all
Externí odkaz:
http://arxiv.org/abs/math/0401372