Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Romain Joly"'
Publikováno v:
Europe's Journal of Psychology, Vol 19, Iss 4, Pp 387-400 (2023)
In the Japanese philosophy of life, ‘ikigai’ broadly refers to having a ‘reason for living’, or a purpose in life. From a phenomenological and empirical viewpoint, ikigai is reported to increase human well-being and even life expectancy. Howe
Externí odkaz:
https://doaj.org/article/00636956ec94475ca8c3c7e44cc7b97d
Publikováno v:
Journal of Dynamics and Differential Equations. 34:2585-2592
Autor:
Camille Laurent, Romain Joly
Publikováno v:
Annales Henri Lebesgue. 3:1241-1289
We consider the semilinear damped wave equation $\partial^2_{tt} u(x,t) + \gamma(x)\partial_t u(x,t) = \Delta u(x,t) - \alpha u(x,t) - f (x,u(x,t))$. In this article, we obtain the first results concerning the stabilization of this semilinear equatio
Publikováno v:
Social Robotics ISBN: 9783031246692
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::645bb3c9e5fd97ea0a0c22dd9f4157f6
https://doi.org/10.1007/978-3-031-24670-8_61
https://doi.org/10.1007/978-3-031-24670-8_61
Publikováno v:
Journal of Dynamics and Differential Equations. 34:2639-2679
In this paper, we consider the scalar reaction–diffusion equations $$\partial _t u= \Delta u+f(x,u, \nabla u)$$ on a bounded domain $$\Omega \subset \mathbb {R}^d$$ of class $$\mathcal {C}^{2,\gamma }$$. We show that the heteroclinic and homoclinic
Autor:
Romain Joly, Alessandro Duca
Publikováno v:
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2021
Annales Henri Poincaré, Springer Verlag, 2021
We consider the Schrodinger equation where $$\Omega (t)\subset \mathbb {R}^N$$ is a moving domain depending on the time $$t\in [0,T]$$ . The aim of this work is to provide a meaning to the solutions of such an equation. We use the existence of a boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e139011d486fdecaf129acf78ee265e2
https://hal.archives-ouvertes.fr/hal-02736016v3/file/schrodinger-moving-domain.pdf
https://hal.archives-ouvertes.fr/hal-02736016v3/file/schrodinger-moving-domain.pdf
Autor:
Fabien Szmytka, Sylvain Durbecq, Yanis Balit, Andrei Constantinescu, Eric Charkaluk, Louis-Romain Joly
Publikováno v:
Materials Science and Engineering: A
Materials Science and Engineering: A, Elsevier, 2020, 786, pp.139476. ⟨10.1016/j.msea.2020.139476⟩
Materials Science and Engineering: A, 2020, 786, pp.139476. ⟨10.1016/j.msea.2020.139476⟩
Materials Science and Engineering: A, Elsevier, 2020, 786, pp.139476. ⟨10.1016/j.msea.2020.139476⟩
Materials Science and Engineering: A, 2020, 786, pp.139476. ⟨10.1016/j.msea.2020.139476⟩
The purpose of this article is to assess a self-heating testing method for the characterization of fatigue properties of single-track thickness additively manufactured specimens. It also evaluates the impact of the microstructure orientation with res
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cda4d0b85af22d10b0dafaff787021d
https://hal.archives-ouvertes.fr/hal-02563296/file/selftheating_REVIEWED_Black.pdf
https://hal.archives-ouvertes.fr/hal-02563296/file/selftheating_REVIEWED_Black.pdf
We study the long-time behavior of localized solutions to linear or semilinear parabolic equations in the whole space $\mathbb{R}^n$, where $n \ge 2$, assuming that the diffusion matrix depends on the space variable $x$ and has a finite limit along a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e4408d22e972d14d4f4d2b6116ac0ca
http://arxiv.org/abs/2005.13882
http://arxiv.org/abs/2005.13882
Publikováno v:
Journal of Mathematical Physics
Journal of Mathematical Physics, American Institute of Physics (AIP), In press, ⟨10.1063/5.0010579⟩
Journal of Mathematical Physics, American Institute of Physics (AIP), In press, ⟨10.1063/5.0010579⟩
International audience; We study the Schrödinger equation $i\partial_t \psi = −\Delta\psi + V\psi$ on $L^2((0,1), C)$ where $V$ is a very high and localized potential wall. We aim to perform permutations of the eigenmodes and to control the soluti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9dda416c468322ea84d6f323cef44bdd
https://hal.archives-ouvertes.fr/hal-02414236
https://hal.archives-ouvertes.fr/hal-02414236
Autor:
Louis-Romain Joly
Publikováno v:
ROSCon France.