Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Román Sasyk"'
Autor:
Marcelo Paredes, Román Sasyk
We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least $4$ over global fields. As an intermediate step,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b939066569aa03b7f7adbecfa0b9882
http://arxiv.org/abs/2101.12174
http://arxiv.org/abs/2101.12174
Autor:
Román Sasyk, Javier Brude
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We give a simple and unified proof showing that the unrestricted wreath product of a weakly sofic, sofic, linear sofic, or hyperlinear group by an amenable group is weakly sofic, sofic, linear sofic, or hyperlinear, respectively. By means of the Kalo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55e0adf246b77af65153730646ee79e9
http://arxiv.org/abs/2004.05735
http://arxiv.org/abs/2004.05735
Autor:
Román Sasyk
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Bull. Belg. Math. Soc. Simon Stevin 26, no. 5 (2019), 725-742
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Bull. Belg. Math. Soc. Simon Stevin 26, no. 5 (2019), 725-742
We show that amenability, the Haagerup property, the Kazhdan's property (T) and exactness are preserved under taking second nilpotent product of groups. We also define the restricted second nilpotent wreath product of groups, this is a semi-direct pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ab52b416122c12db61b8c36666fead2
https://projecteuclid.org/euclid.bbms/1579402819
https://projecteuclid.org/euclid.bbms/1579402819
Publikováno v:
Sasyk, R, Törnquist, A & Vaes, S 2019, ' Non-classification of free Araki-Woods factors and τ-invariants ', Groups, Geometry, and Dynamics, vol. 13, no. 4, pp. 1219-1234 . https://doi.org/10.4171/GGD/520
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of $\tau$-topologies, arising as invariants of type III factors, as well
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ec9cc611d318bbd1f248c763be8c538
http://arxiv.org/abs/1708.07496
http://arxiv.org/abs/1708.07496