Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Rollin, Yann"'
Autor:
Jauberteau, François, Rollin, Yann
We consider the moduli space of isotropic maps from a closed surface $\Sigma$ to a symplectic affine space and construct a K\"ahler moment map geometry, on a space of differential forms on $\Sigma$, such that the isotropic maps correspond to certain
Externí odkaz:
http://arxiv.org/abs/2404.11347
Autor:
Rollin, Yann
We obtain a correspondence between the group of symplectic diffeomorphisms of a 4-dimensional real torus and the vanishing locus of a certain hyperK\"ahler moment map. This observation gives rise to a new flow, called the modified moment map flow. Th
Externí odkaz:
http://arxiv.org/abs/2110.02679
Autor:
Rollin, Yann
Publikováno v:
Journal of Symplectic Geometry 2022 vol 20 issue #6
We prove that every smoothly immersed 2-torus of $\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\mathbb{R}^4$, the surface can be a
Externí odkaz:
http://arxiv.org/abs/2012.05777
We consider smooth isotropic immersions from the 2-dimensional torus into $R^{2n}$, for $n \geq 2$. When $n = 2$ the image of such map is an immersed Lagrangian torus of $R^4$. We prove that such isotropic immersions can be approximated by arbitraril
Externí odkaz:
http://arxiv.org/abs/1802.08712
Autor:
Legendre, Eveline, Rollin, Yann
Hamiltonian stationary Lagrangian submanifolds (HSLAG) are a natural generalization of special Lagrangian manifolds (SLAG). The latter only make sense on Calabi-Yau manifolds whereas the former are defined for any almost K\"ahler manifold. Special La
Externí odkaz:
http://arxiv.org/abs/1606.05886
Autor:
Apostolov, Vestislav, Rollin, Yann
We construct new explicit toric scalar-flat K{\"a}hler ALE metrics on weighted projective spaces of non-compact type, which we use to obtain smooth extremal K{\"a}hler metrics on appropriate resolutions of orbifolds. In particular, we obtain new extr
Externí odkaz:
http://arxiv.org/abs/1510.02226
Autor:
Rollin, Yann
Let M=P(E) be a ruled surface. We introduce metrics of finite volume on M whose singularities are parametrized by a parabolic structure over E. Then, we generalise results of Burns--de Bartolomeis and LeBrun, by showing that the existence of a singul
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00148005
http://tel.archives-ouvertes.fr/docs/00/14/80/05/PDF/these_rollin.pdf
http://tel.archives-ouvertes.fr/docs/00/14/80/05/PDF/these_rollin.pdf
Autor:
Rollin, Yann
Parabolic structures with rational weights encode certain iterated blowups of geometrically ruled surfaces. In this paper, we show that the three notions of parabolic polystability, K-polystability and existence of constant scalar curvature K\"ahler
Externí odkaz:
http://arxiv.org/abs/1303.2332
Autor:
Biquard, Olivier, Rollin, Yann
We consider smoothings of a complex surface with singularities of class T and no nontrivial holomorphic vector field. Under an hypothesis of non degeneracy of the smoothing at each singular point, we prove that if the singular surface admits an extre
Externí odkaz:
http://arxiv.org/abs/1211.6957
Autor:
Rollin, Yann, Tipler, Carl
Let $X$ be a compact toric extremal K\"ahler manifold. Using the work of Sz\'ekelyhidi, we provide a combinatorial criterion on the fan describing $X$ to ensure the existence of complex deformations of $X$ that carry extremal metrics. As an example,
Externí odkaz:
http://arxiv.org/abs/1201.4137