Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Rolf Stenberg"'
Publikováno v:
SIAM Journal on Scientific Computing. 43:A1651-A1670
We introduce Nitsche's method for the numerical approximation of the Kirchhoff--Love plate equation under general Robin-type boundary conditions. We analyze the method by presenting a priori and a posteriori error estimates in mesh-dependent norms. S
Autor:
Philip Lederer, Rolf Stenberg
We consider mixed finite element methods for linear elasticity for which the symmetry of the stress tensor is exactly satisfied. We derive a new quasi-optimal a priori error estimate uniformly valid with respect to the compressibility. For the a post
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d715df49cc4e983fee4fe9679c802db7
http://arxiv.org/abs/2111.13513
http://arxiv.org/abs/2111.13513
Publikováno v:
Computational Methods in Applied Mathematics. 20:215-225
This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem. We discuss a reconstruction in the standard H 0 1 {H_{0}^{1}} -conforming space for the primal variable of the mixed Laplace eige
Publikováno v:
Portugaliae Mathematica. 75:189-204
We derive optimal a priori and a posteriori error estimates for Nitsche's method applied to unilateral contact problems. Our analysis is based on the interpretation of Nitsche's method as a stabilised finite element method for the mixed Lagrange mult
Publikováno v:
Numerische Mathematik. 142:973-994
Optimal a priori and a posteriori error estimates are derived for three variants of Nitsche’s mortar finite elements. The analysis is based on the equivalence of Nitsche’s method and the stabilised mixed method. Nitsche’s method is defined so t
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783030558734
ENUMATH
ENUMATH
We survey the Nitsche’s master-slave finite element method for elastic contact problems analysed in Gustafsson et al. (SIAM J Sci Comput 42:B425–B446, 2020). The main steps of the error analysis are recalled and numerical benchmark computations a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7794fe0e4223067069d64bcdcd8777b
https://doi.org/10.1007/978-3-030-55874-1_89
https://doi.org/10.1007/978-3-030-55874-1_89
Publikováno v:
Rakenteiden Mekaniikka
We outline the results of our recent article on the a posteriori error analysis of C1 finite elements for the classical Kirchhoff plate model with general boundary conditions. Numerical examples are given.
Publikováno v:
Computational Methods in Applied Mathematics. 17:413-429
We discuss the differences between the penalty, mixed and stabilised methods for the finite element approximation of the obstacle problem. The theoretical properties of the methods are discussed and illustrated through numerical examples.
Publikováno v:
PAMM. 19
Publikováno v:
Lecture Notes in Computational Science and Engineering ISBN: 9783319964140
The theory behind Nitsche’s method for approximating the obstacle problem of clamped Kirchhoff plates is reviewed. A priori estimates and residual-based a posteriori error estimators are presented for the related conforming stabilised finite elemen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fa55e366276b41bc7eca3946d99dbd5d
https://doi.org/10.1007/978-3-319-96415-7_36
https://doi.org/10.1007/978-3-319-96415-7_36