Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Rokovyi, Alexandr"'
Autor:
Kochura, Yuriy, Gordienko, Yuri, Taran, Vlad, Gordienko, Nikita, Rokovyi, Alexandr, Alienin, Oleg, Stirenko, Sergii
Publikováno v:
Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938 (pp. 658-668). Springer, Cham
The impact of the maximally possible batch size (for the better runtime) on performance of graphic processing units (GPU) and tensor processing units (TPU) during training and inference phases is investigated. The numerous runs of the selected deep n
Externí odkaz:
http://arxiv.org/abs/1812.11731
Publikováno v:
Hu Z., Petoukhov S., Dychka I., He M. (eds) Advances in Computer Science for Engineering and Education II. ICCSEEA 2019. Advances in Intelligent Systems and Computing, vol 938 (pp.183-193). Springer, Cham
Preparation of high-quality datasets for the urban scene understanding is a labor-intensive task, especially, for datasets designed for the autonomous driving applications. The application of the coarse ground truth (GT) annotations of these datasets
Externí odkaz:
http://arxiv.org/abs/1901.00001
Autor:
Taran, Vlad, Gordienko, Nikita, Kochura, Yuriy, Gordienko, Yuri, Rokovyi, Alexandr, Alienin, Oleg, Stirenko, Sergii
Publikováno v:
Proceedings of the 19th International Conference on Computer Systems and Technologies (CompSysTech'18), Boris Rachev and Angel Smrikarov (Eds.). ACM, New York, NY, USA, 73-80 (2018)
Semantic image segmentation is one the most demanding task, especially for analysis of traffic conditions for self-driving cars. Here the results of application of several deep learning architectures (PSPNet and ICNet) for semantic image segmentation
Externí odkaz:
http://arxiv.org/abs/1806.01896
Preparation of high-quality datasets for the urban scene understanding is a labor-intensive task, especially, for datasets designed for the autonomous driving applications. The application of the coarse ground truth (GT) annotations of these datasets
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2cd123939249d218c2e718abc7f73b49