Zobrazeno 1 - 10
of 182
pro vyhledávání: '"Rognes, John"'
We determine the A(1)-homotopy of the topological cyclic homology of the connective real K-theory spectrum ko. The answer has an associated graded that is a free F_2[v_2^4]-module of rank 52, on explicit generators in stems -1 \le * \le 30. The calcu
Externí odkaz:
http://arxiv.org/abs/2309.11463
Autor:
Gregersen, Thomas, Rognes, John
We establish motivic versions of the theorems of Lin and Gunawardena, thereby confirming the motivic Segal conjecture for the algebraic group $\mu_\ell$ of $\ell$-th roots of unity, where $\ell$ is any prime. To achieve this we develop motivic Singer
Externí odkaz:
http://arxiv.org/abs/2302.12659
Autor:
Bergsaker, Håkon Schad, Rognes, John
We prove that the comparison map from $G$-fixed points to $G$-homotopy fixed points, for the $G$-fold smash power of a bounded below spectrum $B$, becomes an equivalence after $p$-completion if $G$ is a finite $p$-group and $H_*(B; F_p)$ is of finite
Externí odkaz:
http://arxiv.org/abs/2207.13408
We calculate the mod (p, v_1, v_2) homotopy V(2)_* TC(BP<2>) of the topological cyclic homology of the truncated Brown--Peterson spectrum BP<2>, at all primes p\ge7, and show that it is a finitely generated and free F_p[v_3]-module on 12p+4 generator
Externí odkaz:
http://arxiv.org/abs/2204.05890
Autor:
Rognes, John
We compare the weight and stable rank filtrations of algebraic K-theory, and relate the Beilinson-Soul\'e vanishing conjecture to the author's connectivity conjecture.
Externí odkaz:
http://arxiv.org/abs/2110.12264
Autor:
Bruner, Robert R., Rognes, John
A minimal resolution of the mod 2 Steenrod algebra in the range $0 \leq s \leq 128$, $0 \leq t \leq 200$, together with chain maps for each cocycle in that range and for the squaring operation $Sq^0$ in the cohomology of the Steenrod algebra.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2109.13117
Publikováno v:
Mathematische Zeitschrift, 2022
We discuss proofs of local cohomology theorems for topological modular forms, based on Mahowald-Rezk duality and on Gorenstein duality, and then make the associated local cohomology spectral sequences explicit, including their differential patterns a
Externí odkaz:
http://arxiv.org/abs/2107.02272
Autor:
Bruner, Robert R., Rognes, John
Publikováno v:
Transactions of the American Mathematical Society, 2022
We show that if we factor the long exact sequence in cohomology of a cofiber sequence of spectra into short exact sequences, then the $d_2$-differential in the Adams spectral sequence of any one term is related in a precise way to Yoneda composition
Externí odkaz:
http://arxiv.org/abs/2105.02601
Autor:
Hedenlund, Alice, Rognes, John
Publikováno v:
Mem. Amer. Math. Soc. 294 (2024), no. 1468
Given a compact Lie group $G$ and a commutative orthogonal ring spectrum $R$ such that $R[G]_* = \pi_*(R \wedge G_+)$ is finitely generated and projective over $\pi_*(R)$, we construct a multiplicative $G$-Tate spectral sequence for each $R$-module $
Externí odkaz:
http://arxiv.org/abs/2008.09095