Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Rognerud, Baptiste"'
Autor:
Rognerud, Baptiste
There are three classical lattices on the Catalan numbers: the Tamari lattice, the lattice of noncrossing partitions and the lattice of Dyck paths. The first is known to be isomorphic to the lattice of torsion classes of the path algebra of an equior
Externí odkaz:
http://arxiv.org/abs/2410.18034
Autor:
Luo, Yongle, Rognerud, Baptiste
We consider the lattice of all the weak factorization systems on a given finite lattice. We prove that it is semidistributive, trim and congruence uniform. We deduce a graph theoretical approach to the problem of enumerating transfer systems. As an a
Externí odkaz:
http://arxiv.org/abs/2410.06182
Autor:
Gobet, Thomas, Rognerud, Baptiste
We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially orde
Externí odkaz:
http://arxiv.org/abs/2301.00744
Publikováno v:
Journal of Combinatorial Theory, Series A. Volume 187, April 2022
A quasi-hereditary algebra is an Artin algebra together with a partial order on its set of isomorphism classes of simple modules which satisfies certain conditions. In this article we investigate all the possible choices that yield to quasi-hereditar
Externí odkaz:
http://arxiv.org/abs/2004.04726
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study and classify faithfully balanced modules for the algebra of lower triangular $n$ by $n$ matrices. The theory extends known results about tilting modules, which are classified by binary trees, and counted with the Catalan numbers. The number
Externí odkaz:
http://arxiv.org/abs/1905.00613
Autor:
Rognerud, Baptiste
We prove that the bounded derived category of the incidence algebra of the Tamari lattice is fractionally Calabi-Yau, giving a positive answer to a conjecture of Chapoton. The proof involves a combinatorial description of the Serre functor of this de
Externí odkaz:
http://arxiv.org/abs/1807.08503
We study two constructions related to the intervals of finite posets. The first one is a poset. The second one is more complicated. Loosely speaking it can be seen as a poset with some extra zero-relations. As main result, we show that these two cons
Externí odkaz:
http://arxiv.org/abs/1801.05154
Autor:
Rognerud, Baptiste
In this article we use the theory of interval-posets recently introduced by Ch{\^a}tel and Pons in order to describe some interesting families of intervals in the Tamari lattices. These families are defined as interval-posets avoiding specific config
Externí odkaz:
http://arxiv.org/abs/1801.04097
Publikováno v:
In Journal of Combinatorial Theory, Series A April 2022 187