Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Roghayeh Hafezieh"'
Publikováno v:
Communications in Algebra. 51:2978-2982
Autor:
Roghayeh Hafezieh
Publikováno v:
International Journal of Group Theory, Vol 7, Iss 3, Pp 1-6 (2018)
Let $G$ be a finite group. The prime degree graph of $G$, denoted by $Delta(G)$, is an undirected graph whose vertex set is $rho(G)$ and there is an edge between two distinct primes $p$ and $q$ if and only if $pq$ div
Externí odkaz:
https://doaj.org/article/5e0770b322f441c892924ff9ba553b6c
Autor:
Roghayeh Hafezieh
Publikováno v:
International Journal of Group Theory, Vol 6, Iss 4, Pp 41-51 (2017)
Let $G$ be a finite group. We consider the set of the irreducible complex characters of $G$, namely $Irr(G)$, and the related degree set $cd(G)={chi(1) : chiin Irr(G)}$. Let $rho(G)$ be the set of all primes which div
Externí odkaz:
https://doaj.org/article/07ed66ebd9dd4889b97e677b6acd5d93
Publikováno v:
Turkish Journal of Mathematics. 46:746-752
Publikováno v:
Journal of Group Theory. 25:151-162
For a finite group 𝐺, an element is called a vanishing element of 𝐺 if it is a zero of an irreducible character of 𝐺; otherwise, it is called a non-vanishing element. Moreover, the conjugacy class of an element is called a vanishing class if
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Given a finite group G , the character graph, denoted by Δ ( G ) , for its irreducible character degrees is a graph with vertex set ρ ( G ) which is the set of prime numbers that divide the irreducible character degrees of G , and with { p , q } be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1699a85dab77e83a97a35137c372d253
https://aperta.ulakbim.gov.tr/record/234520
https://aperta.ulakbim.gov.tr/record/234520
Autor:
Pablo Spiga, Roghayeh Hafezieh
Publikováno v:
Rocky Mountain J. Math. 50, no. 6 (2020), 2073-2095
Let $G$ be a finite group. The bipartite divisor graph for the set of irreducible complex character degrees is the undirected graph with vertex set consisting of the prime numbers dividing some character degree and of the non-identity character degre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8da3128c84f7af860881b7f8180ac85e
http://hdl.handle.net/10281/345890
http://hdl.handle.net/10281/345890
Autor:
Roghayeh Hafezieh
Publikováno v:
Volume: 48, Issue: 6 1620-1625
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
Given a finite group $G$, the \textit{bipartite divisor graph}, denoted by $B(G)$, for its irreducible character degrees is the bipartite graph with bipartition consisting of $cd(G)^{*}$, where $cd(G)^{*}$ denotes the nonidentity irreducible characte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cc8c34ba439169d5900463463ca23b3
https://dergipark.org.tr/tr/pub/hujms/issue/50516/656649
https://dergipark.org.tr/tr/pub/hujms/issue/50516/656649
Publikováno v:
Bulletin of the Australian Mathematical Society. 87:288-297
The bipartite divisor graph B(X), for a set Xof positive integers, and some of its properties have recently been studied. We construct the bipartite divisor graph for the product of subsets of positive integers and investigate some of its properties.