Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Roger Zierau"'
Publikováno v:
Advances in Mathematics
Advances in Mathematics, Elsevier, 2020, 361, pp.106917. ⟨10.1016/j.aim.2019.106917⟩
Advances in Mathematics, Elsevier, 2020, 361, pp.106917. ⟨10.1016/j.aim.2019.106917⟩
Let $G_{\mathbb{R}}$ be a simple real linear Lie group with maximal compact subgroup $K_{\mathbb{R}}$ and assume that ${\rm rank}(G_\mathbb{R})={\rm rank}(K_\mathbb{R})$. For any representation $X$ of Gelfand-Kirillov dimension $\frac{1}{2} {\rm dim}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68d0b52f30630e05b26c27a2e919e2b7
https://hal.archives-ouvertes.fr/hal-03336278/document
https://hal.archives-ouvertes.fr/hal-03336278/document
Autor:
Leticia Barchini, Roger Zierau
Publikováno v:
Transformation Groups. 22:591-630
Characteristic cycles, leading term cycles, associated varieties and Harish-Chandra cells are computed for the family of highest weight Harish-Chandra modules for Sp(2n;R) having regular integral infinitesimal character.
Publikováno v:
Kyoto J. Math. 59, no. 4 (2019), 787-813
In this article, we explicitly list all reducible scalar-type generalized Verma modules for all maximal parabolic subalgebras of the simple complex Lie algebras.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eae0cc2b35c595732a938ddbe000a4e6
https://projecteuclid.org/euclid.kjm/1569376962
https://projecteuclid.org/euclid.kjm/1569376962
Publikováno v:
Glasnik matematički
Volume 53
Issue 2
Glasnik Matematicki
Glasnik Matematicki, Drazen Adamovic, 2018, 53 (2), pp.275-330. ⟨10.3336/gm.53.2.05⟩
Volume 53
Issue 2
Glasnik Matematicki
Glasnik Matematicki, Drazen Adamovic, 2018, 53 (2), pp.275-330. ⟨10.3336/gm.53.2.05⟩
International audience; Let G_R be a simple real linear Lie group with maximal compact subgroup K_R and assume that rank(G_R) = rank(K_R). In [MPVZ] we proved that for any representation X of Gelfand-Kirillov dimension 1 2 dim(G_R /K_R), the polynomi
Autor:
Leticia Barchini, Roger Zierau
Publikováno v:
Journal of Pure and Applied Algebra. 219:1103-1121
This is the second of two articles that consider the pairs of complex reductive groups ( G , K ) = ( Sp ( 2 n ) , Sp ( 2 p ) × Sp ( 2 q ) ) and ( SO ( 2 n ) , GL ( n ) ) and components of Springer fibers associated to closed K-orbits in the flag var
Autor:
S. Mehdi, Roger Zierau
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2014, 142, pp.1507-1512. ⟨10.1090/S0002-9939-2014-11952-6⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2014, 142, pp.1507-1512. ⟨10.1090/S0002-9939-2014-11952-6⟩
International audience
Autor:
S. Mehdi, Roger Zierau
Publikováno v:
Advances in Mathematics. 199:1-28
Let G be a real reductive Lie group and G / H a reductive homogeneous space. We consider Kostant's cubic Dirac operator D on G / H twisted with a finite-dimensional representation of H . Under the assumption that G and H have the same complex rank, w
Autor:
Salah Mehdi, Roger Zierau
Publikováno v:
Developments and Retrospectives in Lie Theory ISBN: 9783319099330
Developments and retrospectives in Lie theory : geometric and analytic methods
Mason Geoffrey, Penkov Ivan, Wolf Joseph A. Developments and retrospectives in Lie theory : geometric and analytic methods, 37, Springer, pp.161-181, 2014, Developments in mathematics, 978-3-319-09933-0
Developments and retrospectives in Lie theory : geometric and analytic methods
Mason Geoffrey, Penkov Ivan, Wolf Joseph A. Developments and retrospectives in Lie theory : geometric and analytic methods, 37, Springer, pp.161-181, 2014, Developments in mathematics, 978-3-319-09933-0
An integral intertwining operator is given from certain principal series representations into spaces of harmonic spinors for Kostant’s cubic Dirac operator. This provides an integral representation for harmonic spinors on a large family of reductiv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24dcd1e278d22219ac0e84cb9255ada3
https://doi.org/10.1007/978-3-319-09934-7_6
https://doi.org/10.1007/978-3-319-09934-7_6
Autor:
Roger Zierau, Joseph A. Wolf
Publikováno v:
Mathematische Annalen. 316:529-545
Let Z = G/Q, a complex flag manifold, where G is a complex semisimple Lie group and Q is a parabolic subgroup. Fix a real form \(G_0 \subset G\) and consider the linear cycle spaces \(M_D\), spaces of maximal compact linear subvarieties of open orbit
Autor:
Joseph A. Wolf, Roger Zierau
Publikováno v:
The Mathematical Legacy of Harish-Chandra. :527-551