Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Roger Zarnowski"'
Autor:
Roger Zarnowski
We reformulate the $3x+1$ conjecture by restricting attention to numbers congruent to $2$ (mod $3$). This leads to an equivalent conjecture for positive integers that reveals new aspects of the dynamics of the $3x+1$ problem. Advantages include a gov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4a17f189cfa6c7b70c3da15bcb8452a
Autor:
Roger Zarnowski, David Hoff
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 11:159-187
We prove that discontinuous solutions of the Navier-Stokes equations for isentropic or isothermal flow depend continuously on their initial data in L2. This improves earlier results in which continuous dependence was known only in a much stronger nor
Autor:
Roger Zarnowski, David Hoff
Publikováno v:
SIAM Journal on Numerical Analysis. 28:78-112
Convergence is proved and error bounds are derived for a finite difference approximation to discontinuous solutions of the Navier–Stokes equations for one-dimensional isentropic compressible flow. This scheme can be implemented under mesh condition
Publikováno v:
The American Mathematical Monthly. 109:923
Solution by Charles Diminnie and Roger Zarnowski, Angelo State University, San Angelo, IX. The answer is YES. We construct a function f from [0, 1] to [0, 1] that is 0 almost everywhere, yet attains every value in [0, 1] on every subinterval of [0, 1
Autor:
Ismor Fischer, Ice B. Risteski, Michael H. Brill, Jiro Fukuta, Michael McGeachie, Stan Wagon, Ira Rosenholtz, Seth Zimmerman, Erwin Just, John Christopher, Marty Getz, Dixon Jones, Benjamin G. Klein, Arthur L. Holshouser, Roger Zarnowski, Charles Diminnie, Homer White, Robert Bailey, Gao Peng, Ken Richardson
Publikováno v:
Mathematics Magazine. 72:148
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.