Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Rogelio Grau"'
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 5, Pp 1-20 (2020)
In this paper, we prove existence and uniqueness of solutions of Volterra–Stieltjes integral equations using the Henstock–Kurzweil integral. Also, we prove that these equations encompass impulsive Volterra–Stieltjes integral equations and prove
Externí odkaz:
https://doaj.org/article/97de33b3acf4457499194385a95d1551
Autor:
Bienvenido Barraza Martínez, Jonathan González Ospino, Rogelio Grau Acuña, Jairo Hernández Monzón
Publikováno v:
Mathematics, Vol 10, Iss 5, p 751 (2022)
We consider Fourier multiplier systems on Rn with components belonging to the standard Hörmander class S1,0mRn, but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ⊂C (introduced by Denk, Saal, and Se
Externí odkaz:
https://doaj.org/article/988d5c6ef6834a6091d7c8819d47af06
Publikováno v:
Mathematics, Vol 9, Iss 5, p 474 (2021)
We investigate the semi-linear, non-autonomous, first-order abstract differential equation x′(t)=A(t)x(t)+f(t,x(t),φ[α(t,x(t))]),t∈R. We obtain results on existence and uniqueness of (ω,c)-periodic (second-kind periodic) mild solutions, assumi
Externí odkaz:
https://doaj.org/article/6058604c66d24d329525d593e9a53444
Autor:
Rogelio Grau Acuña
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
In this work, our goal is to prove results on prolongation of solutions, uniform boundedness of solutions, uniform stability as well uniform asymptotic stability (in the classical sense of Lyapunov) for measure differential equations and for dynamic
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-36
It is known that the concept of affine-periodicity encompasses classic notions of symmetries as the classic periodicity, anti-periodicity and rotating symmetries (in particular, quasi-periodicity). The aim of this paper is to establish the basis of a
Publikováno v:
Journal of Differential Equations. 299:256-283
In this paper, we are interested in investigating stability results for generalized ordinary differential equations (generalized ODEs in short), and their applications to measure differential equations and dynamic equations on time scales. First, we
Autor:
Jaqueline G. Mesquita, Rogelio Grau, Everaldo de Mello Bonotto, Márcia Federson, Eduard Toon, L. P. Gimenes
Publikováno v:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications. :173-204
Autor:
Everaldo de Mello Bonotto, Márcia Federson, Eduard Toon, Jaqueline G. Mesquita, Suzete M. Afonso, Fernanda Andrade da Silva, Rogelio Grau
Publikováno v:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications. :341-359
Autor:
Suzete M. Afonso, Fernanda Andrade da Silva, Everaldo M. Bonotto, Márcia Federson, Luciene P. Gimenes, Rogelio Grau, Jaqueline G. Mesquita, Eduard Toon
Publikováno v:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications. :241-294
Autor:
Márcia Federson, Everaldo de Mello Bonotto, Jaqueline G. Mesquita, Miguel V. S. Frasson, Rogelio Grau
Publikováno v:
Generalized Ordinary Differential Equations in Abstract Spaces and Applications. :71-143