Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Rodrigues, L. Miguel"'
We prove that all irrotational planar periodic traveling waves of sufficiently small-amplitude are spectrally unstable as solutions to three-dimensional inviscid finite-depth gravity water-waves equations.
Comment: 29 pages, 1 figure
Comment: 29 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/2409.01663
We develop a complete stability theory for two-dimensional periodic traveling waves of reaction-diffusion systems. More precisely, we identify a diffusive spectral stability assumption, prove that it implies nonlinear stability and provide a sharp as
Externí odkaz:
http://arxiv.org/abs/2408.14869
Autor:
Garénaux, Louis, Rodrigues, L. Miguel
We fill the two main remaining gaps in the full classification of non-degenerate planar traveling waves of scalar balance laws from the point of view of spectral and nonlinear stability/instability under smooth perturbations. On one hand we investiga
Externí odkaz:
http://arxiv.org/abs/2401.06677
Extending work of Yang-Zumbrun for the hydrodynamically stable case of Froude number F < 2, we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin-film flow. Moreover
Externí odkaz:
http://arxiv.org/abs/2307.10657
In this note, we extend the detailed study of the linearized dynamics obtained for cnoidal waves of the Korteweg--de Vries equation in \cite{JFA-R} to small-amplitude periodic traveling waves of the generalized Korteweg-de Vries equations that are no
Externí odkaz:
http://arxiv.org/abs/2306.00376
We study for the Richard-Gavrilyuk model of inclined shallow water flow, an extension of the classical Saint Venant equations incorporating vorticity, the new feature of convective-wave solutions analogous to contact discontinuitis in inviscid conser
Externí odkaz:
http://arxiv.org/abs/2209.11909
Autor:
Faye, Grégory, Rodrigues, L. Miguel
For strictly entropic Riemann shock solutions of strictly hyperbolic systems of balance laws, we prove that exponential spectral stability implies large-time asymptotic orbital stability. As a preparation, we also prove similar results for constant s
Externí odkaz:
http://arxiv.org/abs/2207.12686
Autor:
Blochas, Paul, Rodrigues, L. Miguel
The present contribution proves the asymptotic orbital stability of viscous regularizations of stable Riemann shocks of scalar balance laws, uniformly with respect to the viscosity/diffusion parameter $\epsilon$. The uniformity is understood in the s
Externí odkaz:
http://arxiv.org/abs/2201.13436
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Nonlinearity, 34, No. 1, pp. 578--641 (2021)
Motivated by the ongoing study of dispersive shock waves in non integrable systems, we propose and analyze a set of wave parameters for periodic waves of a large class of Hamiltonian partial differential systems -- including the generalized Korteweg
Externí odkaz:
http://arxiv.org/abs/1911.10067