Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Rodrigues, Jose Francisco"'
In this work we study an inhomogeneous two-phase obstacle-type problem associated to the $s$-fractional $p$-Laplacian. Besides the existence and uniqueness of solutions, we study the convergence of the solutions when $s\to 1$ to the classical problem
Externí odkaz:
http://arxiv.org/abs/2407.20011
We consider the one and the two obstacles problems for the nonlocal nonlinear anisotropic $g$-Laplacian $\mathcal{L}_g^s$, with $0
Externí odkaz:
http://arxiv.org/abs/2405.17014
We show that the solutions to the nonlocal obstacle problems for the nonlocal $-\Delta_p^s$ operator, when the fractional parameter $s\to\sigma$ for $0<\sigma\leq1$, converge to the solution of the corresponding obstacle problem for $-\Delta_p^\sigma
Externí odkaz:
http://arxiv.org/abs/2402.18106
We consider weak solutions for the obstacle-type viscoelastic ($\nu>0$) and very weak solutions for the obstacle inviscid ($\nu=0$) Dirichlet problems for the heterogeneous and anisotropic wave equation in a fractional framework based on the Riesz fr
Externí odkaz:
http://arxiv.org/abs/2308.16881
We prove the existence of generalised solutions of the Monge-Kantorovich equations with fractional $s$-gradient constraint, $0
Externí odkaz:
http://arxiv.org/abs/2208.14274
Publikováno v:
Math. Nachr. (2024), 1--26
Consider the quasilinear diffusion problem \[\begin{cases}\mathbf{u}'+\Pi(t,x,\mathbf{u},\Sigma \mathbf{u})\mathbb{A}\mathbf{u}=\mathbf{f}(t,x,\mathbf{u},\Sigma \mathbf{u})&\text{ in }]0,T[\times\Omega,\\\mathbf{u}=\mathbf{0}&\text{ in }]0,T[\times\O
Externí odkaz:
http://arxiv.org/abs/2206.11415
Publikováno v:
Mathematics in Engineering, 2023, 5(3): 1-38
In this work, we consider the fractional Stefan-type problem in a Lipschitz bounded domain $\Omega\subset\mathbb{R}^d$ with time-dependent Dirichlet boundary condition for the temperature $\vartheta=\vartheta(x,t)$, $\vartheta=g$ on $\Omega^c\times]0
Externí odkaz:
http://arxiv.org/abs/2201.07827
Publikováno v:
Port. Math. 80 (2023), no. 1/2, pp. 157-205
In this work, we consider the nonlocal obstacle problem with a given obstacle $\psi$ in a bounded Lipschitz domain $\Omega$ in $\mathbb{R}^{d}$, such that $\mathbb{K}_\psi^s=\{v\in H^s_0(\Omega):v\geq\psi \text{ a.e. in }\Omega\}\neq\emptyset$, given
Externí odkaz:
http://arxiv.org/abs/2101.06863
We formulate and study two mathematical models of a thermoforming process involving a membrane and a mould as implicit obstacle problems. In particular, the membrane-mould coupling is determined by the thermal displacement of the mould that depends i
Externí odkaz:
http://arxiv.org/abs/2008.00890
We extend classical results on variational inequalities with convex sets with gradient constraint to a new class of fractional partial differential equations in a bounded domain with constraint on the distributional Riesz fractional gradient, the $\s
Externí odkaz:
http://arxiv.org/abs/1903.02646