Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Rodney Josué Biezuner"'
Publikováno v:
São Paulo Journal of Mathematical Sciences. 16:1163-1193
In this paper we introduce $$B_{\alpha ,\beta }^{k}$$ -manifolds as generalizations of the notion of smooth manifolds with G-structure or with k-bounded geometry. These are $$C^{k}$$ -manifolds whose transition functions $$\varphi _{ji}=\varphi _{j}\
Autor:
Rodney Josué Biezuner, Daniel de Souza Plácido Teixeira, Luiz Felipe Andrade Campos, Yuri Ximenes Martins
Publikováno v:
Physical Review D
Physical Review D, American Physical Society, 2018, ⟨10.1103/PhysRevD.99.023007⟩
Repositório Institucional da UFMG
Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
Physical Review D, American Physical Society, 2018, ⟨10.1103/PhysRevD.99.023007⟩
Repositório Institucional da UFMG
Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior We prove three obstruction results on the existence of equations of state in clusters of stellar systems fu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fa383bd6edabec5d2e25118cef52fdb
https://hal.archives-ouvertes.fr/hal-02907884/file/eqn_state_mass_relation.pdf
https://hal.archives-ouvertes.fr/hal-02907884/file/eqn_state_mass_relation.pdf
Publikováno v:
Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2019, 142, pp.229-239. ⟨10.1016/j.geomphys.2019.04.012⟩
Journal of Geometry and Physics, Elsevier, 2019, 142, pp.229-239. ⟨10.1016/j.geomphys.2019.04.012⟩
In this article we introduce A -valued Einstein–Hilbert–Palatini functional ( A -EHP) over a n -manifold M , where A is an arbitrary graded algebra, as a generalization of the functional arising in the study of the first order formulation of grav
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fff063f64ef2939543c8960b0ac226c3
Autor:
Daniel de Souza Plácido, Luiz Felipe Andrade Campos, Rodney Josué Biezuner, Yuri Ximenes Martins
Publikováno v:
Annals of Physics
Annals of Physics, Elsevier Masson, 2019, 409, pp.167929. ⟨10.1016/j.aop.2019.167929⟩
Annals of Physics, Elsevier Masson, 2019, 409, pp.167929. ⟨10.1016/j.aop.2019.167929⟩
The Tolman--Oppenheimer--Volkoff (TOV) equations are a partially uncoupled system of nonlinear and non-autonomous ordinary differential equations which describe the structure of isotropic spherically symmetric static fluids. Nonlinearity makes findin
Publikováno v:
Journal of Scientific Computing. 52:180-201
We introduce an iterative method for computing the first eigenpair $(\lambda_{p},e_{p})$ for the $p$-Laplacian operator with homogeneous Dirichlet data as the limit of $(\mu_{q,}u_{q}) $ as $q\rightarrow p^{-}$, where $u_{q}$ is the positive solution
Publikováno v:
Repositório Institucional da UFOP
Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
In this paper, we discuss a new method for computing the first Dirichlet eigenvalue of the p-Laplacian inspired by the inverse power method in finite dimensional linear algebra. The iterative technique is independent of the particular method used in
Publikováno v:
Journal of Computational and Applied Mathematics. 196:115-131
A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in featur
Autor:
Rodney Josué Biezuner
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 54:575-589
In this paper we establish the best constant for a Sobolev trace inequality on compact Riemannian manifolds with boundary. More specifically, let 1 1 K (n,p) = inf ∇ u∈L p ( R + n ) u∈L p ∗ (∂ R + n )⧹{0} ∫ R + n | ∇ u| p ( ∫ ∂ R
Publikováno v:
Repositório Institucional da UFOP
Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
In this paper we present an iterative method, inspired by the inverse iteration with shift technique of finite linear algebra, designed to find the eigenvalues and eigenfunctions of the Laplacian with homogeneous Dirichlet boundary condition for arbi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3832d3fb8afa3fca730dea62d0f42f50
http://arxiv.org/abs/1011.3266
http://arxiv.org/abs/1011.3266