Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Rodeiro, Tirso V."'
We present a compact data structure to represent both the duration and length of homogeneous segments of trajectories from moving objects in a way that, as a data warehouse, it allows us to efficiently answer cumulative queries. The division of traje
Externí odkaz:
http://arxiv.org/abs/2002.12050
Publikováno v:
Proc. of the 18th International Conference On Web Engineering (ICWE 2018), Springer International Publishing, Caceres (Spain), 2018, pp. 296-303
Lately, many companies are using Mobile Workforce Management technologies combined with information collected by sensors from mobile devices in order to improve their business processes. Even for small companies, the information that needs to be hand
Externí odkaz:
http://arxiv.org/abs/2001.04910
Autor:
Brisaboa, Nieves R., Fariña, Antonio, Galaktionov, Daniil, Rodeiro, Tirso V., Rodríguez, M. Andrea
Publikováno v:
Proc. of the 25th International Symposium on String Processing and Information Retrieval (SPIRE), Lima, Peru, October 9-11th, pp 85-101 (2018)
Representing the trajectories of mobile objects is a hot topic from the widespread use of smartphones and other GPS devices. However, few works have focused on representing trips over public transportation networks (buses, subway, and trains) where a
Externí odkaz:
http://arxiv.org/abs/1911.09044
Autor:
Brisaboa, Nieves R., Fariña, Antonio, Gómez-Brandón, Adrián, Navarro, Gonzalo, Rodeiro, Tirso V.
Publikováno v:
Dv2v: A Dynamic Variable-to-Variable Compressor. In 2019 Data Compression Conference (DCC) (pp. 83-92). IEEE
We present Dv2v, a new dynamic (one-pass) variable-to-variable compressor. Variable-to-variable compression aims at using a modeler that gathers variable-length input symbols and a variable-length statistical coder that assigns shorter codewords to t
Externí odkaz:
http://arxiv.org/abs/1911.04202
Autor:
Brisaboa, Nieves R., de Bernardo, Guillermo, Navarro, Gonzalo, Rodeiro, Tirso V., Seco, Diego
We introduce a new technique for the efficient management of large sequences of multidimensional data, which takes advantage of regularities that arise in real-world datasets and supports different types of aggregation queries. More importantly, our
Externí odkaz:
http://arxiv.org/abs/1803.02576
Autor:
Brisaboa, Nieves R., Fariña, Antonio, Galaktionov, Daniil, Rodeiro, Tirso V., Rodriguez, M. Andrea
Publikováno v:
In Information Sciences January 2022 584:752-783
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Farina, Antonio, Gutierrez-Asorey, Pablo, Ladra, Susana, Penabad, Miguel R., Rodeiro, Tirso V.
Publikováno v:
IEEE Pervasive Computing; 2022, Vol. 21 Issue 1, p57-64, 8p