Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Rocco, Noraí"'
Publikováno v:
In Journal of Algebra 15 February 2025 664 Part A:251-267
Publikováno v:
Journal of Algebra, Volume 598, 15 May 2022, Pages 236-253
Let $G$ be a group. We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$. In this paper we prove that the derived subgroup $\nu(G)'$ is a central product of three normal subgroups of $\nu(G)$, all i
Externí odkaz:
http://arxiv.org/abs/2103.16366
In this work we study some structural properties of the group $\eta^q(G, H)$, $q$ a non-negative integer, which is an extension of the $q$-tensor product $G \otimes^q H)$, where $G$ and $H$ are normal subgroups of some group $L$. We establish by simp
Externí odkaz:
http://arxiv.org/abs/2004.07969
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -) December 2019, Volume 198, Issue 6, pp 2081--2091
By using finiteness related result of non-abelian tensor product we prove finiteness conditions for the homotopy groups $\pi_n(X)$ in terms of the number of tensors. In particular, we establish a quantitative version of the classical Blakers-Massey t
Externí odkaz:
http://arxiv.org/abs/1812.07559
Let $G$ and $H$ be groups that act compatibly on each other. We denote by $[G,H]$ the derivative subgroup of $G$ under $H$. We prove that if the set $\{g^{-1}g^h \mid g \in G, h \in H\}$ has $m$ elements, then the derivative $[G,H]$ is finite with $m
Externí odkaz:
http://arxiv.org/abs/1812.04747
Autor:
Bastos, Raimundo, Rocco, Noraí R.
Let $G$ and $H$ be groups that act compatibly on each other. We denote by $\eta(G,H)$ a certain extension of the non-abelian tensor product $G \otimes H$ by $G \times H$. Suppose that $G$ is residually finite and the subgroup $[G,H] = \langle g^{-1}g
Externí odkaz:
http://arxiv.org/abs/1709.03132
Let $G$ be a group and $q$ a non-negative integer. We denote by $\nu^q(G)$ a certain extension of the $q$-tensor square $G \otimes^q G$ by $G \times G$. In this paper we derive a polycyclic presentation for $G \otimes^q G$, when $G$ is polycyclic, vi
Externí odkaz:
http://arxiv.org/abs/1706.07683
Publikováno v:
Monatshefte fur Mathematik, December 2018, Volume 187, Issue 4, pp 603--615
Let $G$, $H$ be groups. We denote by $\eta(G,H)$ a certain extension of the non-abelian tensor product $G \otimes H$ by $G \times H$. We prove that if $G$ and $H$ are groups that act compatibly on each other and such that the set of all tensors $T_{\
Externí odkaz:
http://arxiv.org/abs/1611.07467
Autor:
Bastos, Raimundo, Rocco, Noraí Romeu
Let $G$ be a group. We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$. We prove that if $G$ is a finitely generated group in which the set of all simple tensors $T_{\otimes}(G)$ is finite, then t
Externí odkaz:
http://arxiv.org/abs/1603.07003
The authors extend to the $q-$tensor square $G \otimes^q G$ of a group $G$, $q$ a non-negative integer, some structural results due to R. D. Blyth, F. Fumagalli and M. Morigi concerning the non-abelian tensor square $G \otimes G$ ($q = 0$). The resul
Externí odkaz:
http://arxiv.org/abs/1603.05424