Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Robust automatic threshold selection"'
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS. :369-376
A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at
Autor:
Lehmann, Gaetan
Publikováno v:
Africa Insight
Africa Insight, Africa Institute of South Africa, 2006, pp.1-4
Africa Insight, Africa Institute of South Africa, 2006, pp.1-4
Robust Automatic Threshold Selection (RATS) is a fast and noise robust automatic thresholding method based on gradients in the image. The basic idea is to choose the threshold at the intensity where the gradient are the highest.
Publikováno v:
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 369-376
STARTPAGE=369;ENDPAGE=376;TITLE=COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS
STARTPAGE=369;ENDPAGE=376;TITLE=COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS
A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::2bfa9f375af0e97f05ee3d1ce35039b1
https://research.rug.nl/en/publications/35918819-00b4-44bb-957e-766729988b5d
https://research.rug.nl/en/publications/35918819-00b4-44bb-957e-766729988b5d
Two moving-window methods, using either flat or Gaussian weighted windows, for local thresholding with Robust Automatic Threshold Selection are developed. The results show that fast segmentation of blood vessels against a varying background and noise
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dris___00893::49b59e009d9727904f402277597c276c
https://hdl.handle.net/11370/e8506ad7-adb5-464e-ab43-9b9bf1e0cf08
https://hdl.handle.net/11370/e8506ad7-adb5-464e-ab43-9b9bf1e0cf08
A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dris___01423::e50b031f0d7742ac7354e14a6d71bf41
https://research.rug.nl/en/publications/35918819-00b4-44bb-957e-766729988b5d
https://research.rug.nl/en/publications/35918819-00b4-44bb-957e-766729988b5d
Autor:
Michael H. F. Wilkinson
Publikováno v:
Computer Analysis of Images and Patterns ISBN: 9783540407300
CAIP
CAIP
A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::668c56a645221ff1913e7a301d7833f6
https://doi.org/10.1007/978-3-540-45179-2_46
https://doi.org/10.1007/978-3-540-45179-2_46
Two moving-window methods, using either flat or Gaussian weighted windows, for local thresholding with Robust Automatic Threshold Selection are developed. The results show that fast segmentation of blood vessels against a varying background and noise
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dris___01423::aace3424bcdadd8f862daa5b474d7f5f
https://research.rug.nl/en/publications/e8506ad7-adb5-464e-ab43-9b9bf1e0cf08
https://research.rug.nl/en/publications/e8506ad7-adb5-464e-ab43-9b9bf1e0cf08
Publikováno v:
2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 1093-1096
STARTPAGE=1093;ENDPAGE=1096;TITLE=2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS
University of Groningen
ICIP (2)
ResearcherID
Proceedings IEEE Conference on Image Processing (ICIP 2003, Barcelona, Spain, September 14-17, 2003), 2, 1093-1096
STARTPAGE=1093;ENDPAGE=1096;TITLE=2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS
University of Groningen
ICIP (2)
ResearcherID
Proceedings IEEE Conference on Image Processing (ICIP 2003, Barcelona, Spain, September 14-17, 2003), 2, 1093-1096
Two moving-window methods, using either flat or Gaussian weighted windows, for local thresholding with robust automatic threshold selection are developed. The results show that fast segmentation of blood vessels against a varying background and noise
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e67a80d9c9b751e85564d05149013a1
https://doi.org/10.1109/icip.2003.1246876
https://doi.org/10.1109/icip.2003.1246876