Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Robin Ströbel"'
Publikováno v:
Machine Learning and Knowledge Extraction, Vol 6, Iss 2, Pp 1072-1086 (2024)
This study addresses a significant gap in the field of time series regression modeling by highlighting the central role of data augmentation in improving model accuracy. The primary objective is to present a detailed methodology for systematic sampli
Externí odkaz:
https://doaj.org/article/3be8dc8253e2429496cc99169865fa2e
Publikováno v:
Machines, Vol 12, Iss 3, p 153 (2024)
This study addresses the challenge of the optimization of milling in industrial production, focusing on developing and applying a novel framework for optimising manufacturing processes. Recognising a gap in current methods, the research primarily tar
Externí odkaz:
https://doaj.org/article/e4f67142cf3d4885bb5d9711965153fc
Publikováno v:
Machines, Vol 11, Iss 11, p 1015 (2023)
The prediction of energy-related time series for computer numerical control (CNC) machine tool axes is an essential enabler for the shift towards autonomous and intelligent production. In particular, a precise prediction of energy consumption is need
Externí odkaz:
https://doaj.org/article/b98c51be73404632b49f7068a8e59c5d
Publikováno v:
Machines, Vol 11, Iss 11, p 1032 (2023)
In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual sta
Externí odkaz:
https://doaj.org/article/1eea8168b2bc4cd0be60e141848a37ca
Publikováno v:
Journal of Machine Engineering.
Publikováno v:
Lecture Notes in Production Engineering ISBN: 9783031183171
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::994f2fe2738b11e1e49b48b479a45619
https://doi.org/10.1007/978-3-031-18318-8_50
https://doi.org/10.1007/978-3-031-18318-8_50
Publikováno v:
Procedia CIRP, 107, 734–739
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3eee6c1aeb3555c03f2ec3fe193fc06c