Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Robin Ming Chen"'
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 172:105-138
Publikováno v:
Archive for Rational Mechanics and Analysis. 246:535-559
Publikováno v:
International Mathematics Research Notices. 2023:6186-6218
This paper is concerned with two classes of cubic quasilinear equations, which can be derived as asymptotic models from shallow-water approximation to the 2D incompressible Euler equations. One class of the models has homogeneous cubic nonlinearity a
Publikováno v:
Archive for Rational Mechanics and Analysis. 241:497-533
We consider weak solutions of the Novikov equation that lie in the energy space $$H^1$$ with non-negative momentum densities. We prove that a special family of such weak solutions, namely the peakons, is $$H^1$$ -asymptotically stable. Such a result
Publikováno v:
Communications on Applied Mathematics and Computation.
Publikováno v:
Journal of Mathematical Fluid Mechanics. 24
Publikováno v:
Journal of Differential Equations. 269:6899-6940
The nonlinear stability and local existence of compressible vortex sheets for the two-dimensional isentropic elastic fluid are established in the usual Sobolev spaces. The problem has a characteristic free boundary, and the Kreiss–Lopatinskiĭ cond
Publikováno v:
Mathematische Annalen. 376:863-912
The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work (Chen et al. in Adv Math 311:18–60, 2017b) on the linear stability with constant coefficients
Autor:
Robin Ming Chen, Jie Jin
The Boussinesq $abcd$ system arises in the modeling of long wave small amplitude water waves in a channel, where the four parameters $(a,b,c,d)$ satisfy one constraint. In this paper we focus on the solitary wave solutions to such a system. In partic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b6b325067e99c9dba04b3db0656df17
http://arxiv.org/abs/2103.10812
http://arxiv.org/abs/2103.10812
In dimension $n=2$ and $3$, we show that for any initial datum belonging to a dense subset of the energy space, there exist infinitely many global-in-time admissible weak solutions to the isentropic Euler system whenever $1
Comment: 1 figure
Comment: 1 figure
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::372bb7ba7d4af18ed37b081803485b0e
http://arxiv.org/abs/2103.04905
http://arxiv.org/abs/2103.04905