Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Robik Shrestha"'
Autor:
Usman Mahmood, Robik Shrestha, David D. B. Bates, Lorenzo Mannelli, Giuseppe Corrias, Yusuf Emre Erdi, Christopher Kanan
Publikováno v:
Frontiers in Digital Health, Vol 3 (2021)
Artificial intelligence (AI) has been successful at solving numerous problems in machine perception. In radiology, AI systems are rapidly evolving and show progress in guiding treatment decisions, diagnosing, localizing disease on medical images, and
Externí odkaz:
https://doaj.org/article/baf224d0fae948749302b4de401483c9
Publikováno v:
Frontiers in Artificial Intelligence, Vol 2 (2019)
Language grounded image understanding tasks have often been proposed as a method for evaluating progress in artificial intelligence. Ideally, these tasks should test a plethora of capabilities that integrate computer vision, reasoning, and natural la
Externí odkaz:
https://doaj.org/article/2cc1c122e7eb4290bd28b3052b916b66
Autor:
Lorenzo Di Cesare Mannelli, Christopher Kanan, Usman Mahmood, Yusuf E. Erdi, Robik Shrestha, Giuseppe Corrias, David D. B. Bates
Publikováno v:
Frontiers in Digital Health, Vol 3 (2021)
Frontiers in Digital Health
Frontiers in Digital Health
Artificial intelligence (AI) has been successful at solving numerous problems in machine perception. In radiology, AI systems are rapidly evolving and show progress in guiding treatment decisions, diagnosing, localizing disease on medical images, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b24b09e4a327662b956ef0c2d43f2355
http://arxiv.org/abs/2103.03048
http://arxiv.org/abs/2103.03048
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585976
ECCV (8)
ECCV (8)
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0c2c958a0f7c82158302e644ec997308
https://doi.org/10.1007/978-3-030-58598-3_28
https://doi.org/10.1007/978-3-030-58598-3_28
Publikováno v:
ACL
Existing Visual Question Answering (VQA) methods tend to exploit dataset biases and spurious statistical correlations, instead of producing right answers for the right reasons. To address this issue, recent bias mitigation methods for VQA propose to
Publikováno v:
CVPR
Visual Question Answering (VQA) research is split into two camps: the first focuses on VQA datasets that require natural image understanding and the second focuses on synthetic datasets that test reasoning. A good VQA algorithm should be capable of b
Publikováno v:
ACM Transactions on Multimedia Computing, Communications & Applications; Oct2024, Vol. 20 Issue 10, p1-21, 21p
Autor:
Li, Chia-Hao, Jha, Niraj K.
Publikováno v:
ACM Transactions on Embedded Computing Systems; Sep2024, Vol. 23 Issue 5, p1-33, 33p
Autor:
Ayub, Ali, De Francesco, Zachary, Mehta, Jainish, Yaakoub Agha, Khaled, Holthaus, Patrick, Nehaniv, Chrystopher L., Dautenhahn, Kerstin
Publikováno v:
ACM Transactions on Human-Robot Interaction; Dec2024, Vol. 13 Issue 4, p1-39, 39p
Autor:
RAJAPAKSE, VISAL1 visalrajapakse@gmail.com, KARUNANAYAKE, ISHAN2 ishan.karunanayake@unsw.edu.au, AHMED, NADEEM2 nadeem.ahmed@unsw.edu.au
Publikováno v:
ACM Computing Surveys. 2023 Suppl13s, Vol. 55, p1-30. 30p.