Zobrazeno 1 - 10
of 189
pro vyhledávání: '"Robertson, Aaron"'
Autor:
Robertson, Aaron
We extend Deuber's theorem on $(m,p,c)$-sets to hold over the multidimensional positive integer lattices. This leads to a multidimensional Rado theorem where we are guaranteed monochromatic multidimensional points in all finite colorings of $\left(\m
Externí odkaz:
http://arxiv.org/abs/2406.17657
Autor:
Batista, Kiera M.1 (AUTHOR), Robertson, Aaron P.1 (AUTHOR), Tippett, Vivienne1 (AUTHOR), Walsh, Tom P.2 (AUTHOR) tom.walsh@health.qld.gov.au, Platt, Simon R.3 (AUTHOR)
Publikováno v:
Discover Psychology. 11/7/2024, Vol. 4 Issue 1, p1-12. 12p.
Autor:
Crowther, Robert G., Robertson, Aaron, Fernando, Malindu E., Lazzarini, Peter A., Sangla, Kunwarjit S., Golledge, Jonathan
Publikováno v:
In Clinical Biomechanics January 2025 121
Autor:
LaRose, Ryan, Mari, Andrea, Kaiser, Sarah, Karalekas, Peter J., Alves, Andre A., Czarnik, Piotr, Mandouh, Mohamed El, Gordon, Max H., Hindy, Yousef, Robertson, Aaron, Thakre, Purva, Wahl, Misty, Samuel, Danny, Mistri, Rahul, Tremblay, Maxime, Gardner, Nick, Stemen, Nathaniel T., Shammah, Nathan, Zeng, William J.
Publikováno v:
Quantum 6, 774 (2022)
We introduce Mitiq, a Python package for error mitigation on noisy quantum computers. Error mitigation techniques can reduce the impact of noise on near-term quantum computers with minimal overhead in quantum resources by relying on a mixture of quan
Externí odkaz:
http://arxiv.org/abs/2009.04417
Autor:
Landman, Bruce, Robertson, Aaron
Publikováno v:
In Advances in Applied Mathematics May 2023 146
Publikováno v:
In Journal of Combinatorial Theory, Series A January 2023 193
Consider the equation $\mathcal{E}: x_1+ \cdots+x_{k-1} =x_{k}$ and let $k$ and $r$ be positive integers such that $r\mid k$. The number $S_{\mathfrak{z},2}(k;r)$ is defined to be the least positive integer $t$ such that for any 2-coloring $\chi: [1,
Externí odkaz:
http://arxiv.org/abs/1803.00861
Autor:
Robertson, Aaron
Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $w_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow \{0,1,\dots,r-1\}$ admits a $k$-term arithmetic progres
Externí odkaz:
http://arxiv.org/abs/1802.03387
Autor:
Robertson, Aaron
Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $S_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer $n$ such that every coloring $\chi:[1,n] \rightarrow \{0,1,\dots,r-1\}$ admits a solution to $\sum_{i=1}^{k-1} x_i = x_k$ with $\sum_
Externí odkaz:
http://arxiv.org/abs/1802.03382