Zobrazeno 1 - 10
of 222
pro vyhledávání: '"Roberts, Lawrence"'
Autor:
Duong, Nguyen D., Roberts, Lawrence P.
Publikováno v:
Journal of Knot Theory & Its Ramifications; Oct2024, Vol. 33 Issue 12, p1-56, 56p
Autor:
ROBERTS, LAWRENCE
Publikováno v:
Washington History, 2020 Oct 01. 32(1/2), 32-35.
Externí odkaz:
https://www.jstor.org/stable/26947513
Autor:
Roberts, Lawrence
We give a simple, combinatorial construction of a unital, spherical, non-degenerate $\ast$-planar algebra over the ring $\mathbb{Z}[q^{1/2},q^{-1/2}]$. This planar algebra is similar in spirit to the Temperley-Lieb planar algebra, but computations sh
Externí odkaz:
http://arxiv.org/abs/1401.5501
Autor:
Roberts, Lawrence
In two previous papers, the author showed how to decompose the Khovanov homology of a link $\mathcal{L}$ into the algebraic pairing of a type D structure and a type A structure (as defined in bordered Floer homology), whenever a diagram for $\mathcal
Externí odkaz:
http://arxiv.org/abs/1401.5499
Autor:
Roberts, Lawrence
We use the methods of Hedden, Juhasz, and Sarkar to exhibit a set of arborescent knots that bound large numbers of non-isotopic minimal genus spanning surfaces. In particular, we describe a sequence of prime knots K_{n} which will bound at least 2^{2
Externí odkaz:
http://arxiv.org/abs/1308.2899
Autor:
Roberts, Lawrence P.
We describe the first part of a gluing theory for the bigraded Khovanov homology with integer coefficients. This part associates a type D structure to a tangle properly embedded in a half-space and proves that the homotopy class of the type D structu
Externí odkaz:
http://arxiv.org/abs/1304.0463
Autor:
Roberts, Lawrence P.
Publikováno v:
Algebr. Geom. Topol. 16 (2016) 3653-3719
Inspired by bordered Floer homology, we describe a type A structure on a Khovanov homology for a tangle, which complements the type D structure in a previous paper. The type A structure is a differential module over a certain algebra. This can be pai
Externí odkaz:
http://arxiv.org/abs/1304.0465
Autor:
Duong, Nguyen D., Roberts, Lawrence P.
We apply the techniques of totally twisted Khovanov homology to the constructions by M. Asaeda, J. Przytycki, and A. Sikora of Khovanov type homologies for links and tangles in I-bundles over (orientable) surfaces. As a result we describe an invarian
Externí odkaz:
http://arxiv.org/abs/1209.2967
Autor:
Roberts, Lawrence
Publikováno v:
Geom. Topol. 19 (2015) 1-59
We define a variation of Khovanov homology with an explicit description in terms of the spanning trees of a link projection. We prove that this new theory is a link invariant and describe some of its properties. Finally, we provide some the results o
Externí odkaz:
http://arxiv.org/abs/1109.0508