Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Roberto Svaldi"'
Autor:
Stefano Filipazzi, Roberto Svaldi
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-({K_{X}} + B)$ nef over S. A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that $f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}
Externí odkaz:
https://doaj.org/article/58669536371e4940a9b067a1c5716ddf
Autor:
Calum Spicer, Roberto Svaldi
Publikováno v:
Spicer, C & Svaldi, R 2022, ' Effective generation for foliated surfaces : Results and applications ', Journal fur die Reine und Angewandte Mathematik . https://doi.org/10.1515/crelle-2022-0067
We explore the birational structure and invariants of a foliated surface $(X, \mathcal F)$ in terms of the adjoint divisor $K_{\mathcal F}+\epsilon K_X$, $0< \epsilon \ll 1$. We then establish a bound on the automorphism group of an adjoint general t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c890ce672ae2758f89aa42b56faa8296
https://hdl.handle.net/2434/946532
https://hdl.handle.net/2434/946532
We show the Jordan property for regional fundamental groups of klt singularities of fixed dimension. Furthermore, we prove the existence of effective simultaneous index one covers for $n$-dimensional klt singularities. We give an application to the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a45c455dd8972bb5091b2fd374a2dd62
http://hdl.handle.net/2434/937284
http://hdl.handle.net/2434/937284
We prove that rationally connected Calabi--Yau 3-folds with kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected $3$-folds of $\epsilon$-CY type form a birationally bounded family for $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::549de858d63f71f4f65c13e0775bc245
http://hdl.handle.net/2434/937282
http://hdl.handle.net/2434/937282
Autor:
Stefano Filipazzi, Roberto Svaldi
Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-(K_X + B)$ nef over $S$. A conjecture, known as the Shokurov-Koll\'{a}r connectedness principle, predicts that $f^{-1} (s) \cap \mathrm{Nklt}(X,B)$ has at most two conn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c83fb279a8887ab7e4ecf6aeceda7ac
Publikováno v:
Duke Math. J. 167, no. 5 (2018), 923-968
We prove a conjecture of Shokurov which characterises toric varieties using log pairs.
40 pages
40 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d97fb39321ac24b94df812b54ba90afb
http://hdl.handle.net/2434/937277
http://hdl.handle.net/2434/937277
Autor:
Jorge Vitório Pereira, Roberto Svaldi
We introduce and study birational invariants for foliations on projective surfaces built from the adjoint linear series of positive powers of the canonical bundle of the foliation. We apply the results in order to investigate the effective algebraic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::566bbb8199eaf86b6ae034c53198925b
https://www.repository.cam.ac.uk/handle/1810/279584
https://www.repository.cam.ac.uk/handle/1810/279584
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016 (7), pp.2026-2067. ⟨10.1093/imrn/rnv173⟩
International Mathematics Research Notices. Imrn
International Mathematics Research Notices, Oxford University Press (OUP), 2016, 2016 (7), pp.2026-2067. ⟨10.1093/imrn/rnv173⟩
International Mathematics Research Notices. Imrn
We show that being a general fibre of a Mori fibre space is a rather restrictive condition for a Fano variety. More specifically, we obtain two criteria (one sufficient and one necessary) for a Q-factorial Fano variety with terminal singularities to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7393a737306b256b3aecb736bc5b4e8a
http://hdl.handle.net/2108/227821
http://hdl.handle.net/2108/227821
Autor:
Roberto Svaldi
Given a log canonical pair $(X, \Delta)$, we show that $K_X+\Delta$ is nef assuming there is no non-constant map from the affine line with values in the open strata of the stratification induced by the non-klt locus of $(X, \Delta)$. This implies a g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23d52444024d332beaca23b09dc97926
Autor:
Calum Spicer, Roberto Svaldi
Publikováno v:
King's College London