Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Roberto Monti"'
Autor:
Roberto Monti
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 9, Iss 1, Pp 137-146 (2018)
In this survey, we present some recent results on the problem about the regularity of length-minimizing curves in sub-Riemannian geometry. We also sketch the possible application of some ideas coming from Geometric Measure Theory.
Externí odkaz:
https://doaj.org/article/1a37079eba94469aafa3856391dab30e
Autor:
Leonardo Oliveira Reis, Michael A Cerqueira, Carlos Roberto Monti, Amilcar C. de Mattos, Karen L. Ferrari
Publikováno v:
World Journal of Urology. 38:673-680
Tumors escape from the immune system by decreasing CD8+ and increasing CD4+ T cells’ activity, druggable targets. Thermal ablation might activate tumor-specific T cells by raising the presentation of tumor-specific antigens and hindering tumor nega
Autor:
Carlos Roberto Monti, Marcos Tobias-Machado, Alexandre Kyoshi Hidaka, Hamilton de Campos Zampolli, Igor Nunes-Silva
Publikováno v:
International Brazilian Journal of Urology : official journal of the Brazilian Society of Urology
International braz j urol, Volume: 47, Issue: 6, Pages: 1279-1280, Published: 01 OCT 2021
International Brazilian Journal of Urology, Vol 47, Iss 6, Pp 1279-1280 (2021)
International braz j urol, Volume: 47, Issue: 6, Pages: 1279-1280, Published: 01 OCT 2021
International Brazilian Journal of Urology, Vol 47, Iss 6, Pp 1279-1280 (2021)
Introduction: Salvage Radical Prostatectomy after radiation therapy is challenging and associated with high rates of serious complications (1, 2). The novel Retzius-Sparing RARP (RS-RARP) approach has shown excellent continence outcomes (3, 4). Purpo
In $\mathbb{R}^3$ we consider the vector fields \[ X_1 =\frac{ \partial }{\partial x},\qquad X_2 =\frac{ \partial }{\partial y}+ |x|^\alpha \frac{ \partial }{\partial z}, \] where $\alpha\in\left[1,+\infty\right[$. Let $\mathbb{R}^3_+ =\{(x,y,z)\in\m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e376db5540beb73a7664c897480717e
http://hdl.handle.net/11585/813916
http://hdl.handle.net/11585/813916
Autor:
Roberto Monti, Alessandro Socionovo
We show that in analytic sub-Riemannian manifolds of rank 2 satisfying a commutativity condition spiral-like curves are not length minimizing near the center of the spiral. The proof relies upon the delicate construction of a competing curve.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e98a9595284ea5140706e4df6715c220
http://hdl.handle.net/11577/3402032
http://hdl.handle.net/11577/3402032
Publikováno v:
The Journal of Geometric Analysis
The Journal of Geometric Analysis, 2023, ⟨10.1007/s12220-022-01045-4⟩
The Journal of Geometric Analysis, 2023, ⟨10.1007/s12220-022-01045-4⟩
International audience; We study the isoperimetric problem for anisotropic left-invariant perimeter measures on $\mathbb R^3$, endowed with the Heisenberg group structure. The perimeter is associated with a left-invariant norm $\phi$ on the horizonta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc494597cf4b6446251b98b2939f62db
http://arxiv.org/abs/2007.11384
http://arxiv.org/abs/2007.11384
This paper is devoted to a third order study of the end-point map in sub-Riemannian geometry. We first prove third order open mapping results for maps from a Banach space into a finite dimensional manifold. In a second step, we compute the third orde
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4416ea4678606f8707403afd42732544
http://hdl.handle.net/11577/3402028
http://hdl.handle.net/11577/3402028
We characterize the sphere with radius $$\tan ^2 r = 2n+1$$ in the complex projective space $${{\mathbf {C}}}P^{n}$$ as the unique stable hypersurface subject to certain bounds on the curvatures.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75fd62d220128c1f4a949c8cb3459e5c
http://hdl.handle.net/11577/3341290
http://hdl.handle.net/11577/3341290
Publikováno v:
SIAM Journal on Control and Optimization. 56:3351-3369
We give a detailed proof of some facts about the blow-up of horizontal curves in Carnot--Caratheodory spaces.
Autor:
Roberto Monti, Giorgio Stefani
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 108:372-398
We prove two new approximation results of $H$-perimeter minimizing boundaries by means of intrinsic Lipschitz functions in the setting of the Heisenberg group $\mathbb{H}^n$ with $n\ge2$. The first one is an improvement of a result of Monti and is th