Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Roberto Garra"'
Autor:
Roberto Garra, Zivorad Tomovski
Publikováno v:
Mathematical Modelling and Analysis, Vol 26, Iss 1, Pp 72-81 (2021)
In this paper we obtain some new explicit results for nonlinear equations involving Laguerre derivatives in space and/or in time. In particular, by using the invariant subspace method, we have many interesting cases admitting exact solutions in terms
Externí odkaz:
https://doaj.org/article/ce7529c0539344de9c5ea6eeb52ed36b
Autor:
Alessandro De Gregorio, Roberto Garra
Publikováno v:
Modern Stochastics: Theory and Applications, Vol 7, Iss 1, Pp 97-112 (2020)
A general class of probability density functions \[ u(x,t)=C{t^{-\alpha d}}{\left(1-{\left(\frac{\| x\| }{c{t^{\alpha }}}\right)^{\beta }}\right)_{+}^{\gamma }},\hspace{1em}x\in {\mathbb{R}^{d}},t>0,\] is considered, containing as particular case the
Externí odkaz:
https://doaj.org/article/255d5b5652fd4a17ad8b707a3bb4ead8
Autor:
Luca Angelani, Roberto Garra
Publikováno v:
Fractal and Fractional, Vol 7, Iss 3, p 235 (2023)
In this paper, we study g-fractional diffusion on bounded domains in Rd with absorbing boundary conditions. A new general and explicit representation of the solution is obtained. We study the first-passage time distribution, showing the dependence on
Externí odkaz:
https://doaj.org/article/5a0393b6e5744c5bb2c7db4fb97a625c
Autor:
Luca Angelani, Roberto Garra
Publikováno v:
Modern Stochastics: Theory and Applications, Vol 6, Iss 1, Pp 3-12 (2018)
In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a n
Externí odkaz:
https://doaj.org/article/6f153713abf342d69829dbf830c24538
Autor:
Alessandro De Gregorio, Roberto Garra
Publikováno v:
Fractal and Fractional, Vol 5, Iss 2, p 48 (2021)
In this paper, we study diffusion equations involving Hadamard-type time-fractional derivatives related to ultra-slow random models. We start our analysis using the abstract fractional Cauchy problem, replacing the classical time derivative with the
Externí odkaz:
https://doaj.org/article/ed5e60b0e692452b8bfd8de58d4ebd57
Autor:
Luisa Beghin, Roberto Garra
Publikováno v:
Mathematics, Vol 7, Iss 11, p 1009 (2019)
We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution
Externí odkaz:
https://doaj.org/article/758f93fad146445aa26752b1734ede2c
In statistical seismology, the Epidemic Type Aftershocks Sequence (ETAS) model is a branching process used world-wide to forecast earthquake intensity rates and reproduce many statistical features observed in seismicity catalogs. In this paper, we de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d16e5b3afc4c004a1cf749c394689134
Publikováno v:
Fractional Differential Calculus. :111-120
We consider the time-fractional Cattaneo equation involving the tempered Caputo space-fractional derivative. There is an increasing interest in the recent literature for the applications of the fractional-type Cattaneo equations to heat transfer mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06afe7f90f519230b7e4a6d7d68ee49e
Autor:
Roberto Garra, Alessandro De Gregorio
Publikováno v:
Fractal and Fractional, Vol 5, Iss 48, p 48 (2021)
Fractal and Fractional
Volume 5
Issue 2
Fractal and Fractional
Volume 5
Issue 2
In this paper, we study diffusion equations involving Hadamard-type time-fractional derivatives related to ultra-slow random models. We start our analysis using the abstract fractional Cauchy problem, replacing the classical time derivative with the