Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Roberto G. Aragón"'
Publikováno v:
Mathematics, Vol 9, Iss 5, p 565 (2021)
The detection of redundant or irrelevant variables (attributes) in datasets becomes essential in different frameworks, such as in Formal Concept Analysis (FCA). However, removing such variables can have some impact on the concept lattice, which is cl
Externí odkaz:
https://doaj.org/article/77164d241bc8419d8e890e21f737ccf6
Autor:
Roberto G. Aragón, M. Eugenia Cornejo, Jesús Medina, Juan Moreno-García, Eloísa Ramírez-Poussa
Publikováno v:
International Journal of Information Technology & Decision Making. 21:911-932
A fundamental issue about installation of photovoltaic solar power stations is the optimization of the energy generation and the fault detection, for which different techniques and methodologies have already been developed considering meteorological
Publikováno v:
Computational Intelligence and Mathematics for Tackling Complex Problems 4 ISBN: 9783031077067
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f2382b95039c165dc440a3845b4a7cc4
https://doi.org/10.1007/978-3-031-07707-4_19
https://doi.org/10.1007/978-3-031-07707-4_19
Publikováno v:
Fuzzy Sets and Systems. 418:153-169
Attribute and size reductions are key issues in formal concept analysis. In this paper, we consider a special kind of equivalence relation to reduce concept lattices, which will be called local congruence. This equivalence relation is based on the no
Publikováno v:
Computational Intelligence and Mathematics for Tackling Complex Problems 2 ISBN: 9783030888169
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f36e3ef166ff0789f30260d8f509a57a
https://doi.org/10.1007/978-3-030-88817-6_16
https://doi.org/10.1007/978-3-030-88817-6_16
Publikováno v:
Information Processing and Management of Uncertainty in Knowledge-Based Systems ISBN: 9783031089701
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51fb4e3849e70ac9e8f16e0ca60614e2
https://doi.org/10.1007/978-3-031-08971-8_10
https://doi.org/10.1007/978-3-031-08971-8_10
Publikováno v:
Studies in Computational Intelligence ISBN: 9783030749699
Attribute reduction is a topic of interest in data analysis. In particular, in formal concept analysis attribute reductions are associated with equivalence relations defined on concept lattices. In this paper, we study the equivalence relations induc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5e030e5a08f06ed5391662c4cc58a530
https://doi.org/10.1007/978-3-030-74970-5_9
https://doi.org/10.1007/978-3-030-74970-5_9
Autor:
Eloísa Ramírez-Poussa, M. Eugenia Cornejo, Roberto G. Aragón, Jesús Medina, Clemente Rubio-Manzano
Publikováno v:
Studies in Computational Intelligence ISBN: 9783030749699
Studies in Computational Intelligence
Studies in Computational Intelligence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::470cd95652b96ce20b50b08e8d19b6c1
https://doi.org/10.1007/978-3-030-74970-5_23
https://doi.org/10.1007/978-3-030-74970-5_23
Publikováno v:
Mathematics 2021, 9(5), 565
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Mathematics, Vol 9, Iss 565, p 565 (2021)
Mathematics
Volume 9
Issue 5
RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
Universidad de Cádiz
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Mathematics, Vol 9, Iss 565, p 565 (2021)
Mathematics
Volume 9
Issue 5
RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
Universidad de Cádiz
The detection of redundant or irrelevant variables (attributes) in datasets becomes essential in different frameworks, such as in Formal Concept Analysis (FCA). However, removing such variables can have some impact on the concept lattice, which is cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0dc090f1c7479bbe72dc11bbc56dd881
http://hdl.handle.net/10498/24777
http://hdl.handle.net/10498/24777
Publikováno v:
Journal of Computational and Applied Mathematics. 404:113416
Formal concept analysis (FCA) is a useful mathematical tool for obtaining information from relational datasets. One of the most interesting research goals in FCA is the selection of the most representative variables of the dataset, which is called at