Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Roberto Ardon"'
Autor:
Quentin Vanderbecq, Roberto Ardon, Antoine De Reviers, Camille Ruppli, Axel Dallongeville, Isabelle Boulay-Coletta, Gaspard D’Assignies, Marc Zins
Publikováno v:
Insights into Imaging, Vol 13, Iss 1, Pp 1-9 (2022)
Abstract Background To train a machine-learning model to locate the transition zone (TZ) of adhesion-related small bowel obstruction (SBO) on CT scans. Materials and methods We used 562 CTs performed in 2005–2018 in 404 patients with adhesion-relat
Externí odkaz:
https://doaj.org/article/0f5c167b955f4fb68b95ad1c6a6b6280
Publikováno v:
Medical Image Learning with Limited and Noisy Data ISBN: 9783031167591
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6c3fd8442528bdedcd234730fbd36378
https://doi.org/10.1007/978-3-031-16760-7_10
https://doi.org/10.1007/978-3-031-16760-7_10
Publikováno v:
European Journal of Vascular and Endovascular Surgery. 63:525-526
Publikováno v:
ICPR
Explaining decisions of black-box classifiers is paramount in sensitive domains such as medical imaging since clinicians confidence is necessary for adoption. Various explanation approaches have been proposed, among which perturbation based approache
Publikováno v:
Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data ISBN: 9783030874438
iMIMIC/TDA4MedicalData@MICCAI
iMIMIC/TDA4MedicalData@MICCAI
Explaining the decisions of deep learning models is critical for their adoption in medical practice. In this work, we propose to unify existing adversarial explanation methods and path-based feature importance attribution approaches. We consider a pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ec5cc2bdce6dcaa19ed92e615145985f
https://doi.org/10.1007/978-3-030-87444-5_5
https://doi.org/10.1007/978-3-030-87444-5_5
Providing a human-understandable explanation of classifiers' decisions has become imperative to generate trust in their use for day-to-day tasks. Although many works have addressed this problem by generating visual explanation maps, they often provid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c046e2e3f11504d112ad79d0215343f
Autor:
Arshid Azarine, Justine Mougin, Stéphan Haulon, Dominique Fabre, Roberto Ardon, Marc Zins, Gaspard d’Assignies, Chloé Adam
Publikováno v:
Journal of Vascular Surgery. 75:383
Objective The aim of this study was to evaluate an automatic, deep learning based method (Augmented Radiology for Vascular Aneurysm [ARVA]), to detect and assess maximum aortic diameter, providing cross sectional outer to outer aortic wall measuremen
Publikováno v:
Computerized Medical Imaging and Graphics. 58:75-85
The maximum diameter of abdominal aortic aneurysm (AAA) is a key quantification parameter for disease assessment. Although it is routinely measured on 2D-ultrasound images, using a volumetric approach is expected to improve measurement reproducibilit
Autor:
Laurence Rouet, Cybèle Ciofolo-Veit, Ibtisam Salim, Thierry Lefevre, Roberto Ardon, Caroline Raynaud, Aris T. Papageorghiou, A. Cavallaro
Publikováno v:
Fetal, Infant and Ophthalmic Medical Image Analysis ISBN: 9783319675602
FIFI/OMIA@MICCAI
FIFI/OMIA@MICCAI
3D ultrasound (US) is a promising technique to perform automatic extraction of standard planes for fetal anatomy assessment. This requires prior organ localization, which is difficult to obtain with direct learning approaches because of the high vari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10286470467c8234c6ed89ca59423e81
https://ora.ox.ac.uk/objects/uuid:af00a52b-bc29-43b4-a729-83de1fc11b8a
https://ora.ox.ac.uk/objects/uuid:af00a52b-bc29-43b4-a729-83de1fc11b8a
Autor:
Florian Fleckenstein, Yan Zhao, Jean Francois H. Geschwind, Rafael Duran, Ruediger E. Schernthaner, MingDe Lin, Julius Chapiro, Jae Ho Sohn, Roberto Ardon, Sonia Sahu
Publikováno v:
Radiology, vol 283, iss 3
Purpose To investigate whether whole-liver enhancing tumor burden [ETB] can serve as an imaging biomarker and help predict survival better than World Health Organization (WHO), Response Evaluation Criteria in Solid Tumors (RECIST), modified RECIST (m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba8470774da3443bec5fc78ceaf5016d
https://escholarship.org/uc/item/5rh299pg
https://escholarship.org/uc/item/5rh299pg