Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Robert T McGibbon"'
Autor:
Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A Beauchamp, Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, Rafal P Wiewiora, Bernard R Brooks, Vijay S Pande
Publikováno v:
PLoS Computational Biology, Vol 13, Iss 7, p e1005659 (2017)
OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features
Externí odkaz:
https://doaj.org/article/a3c536fb0ab14c8bbc0cb33e5bac84f0
Autor:
Alexander G. Donchev, Andrew G. Taube, Elizabeth Decolvenaere, Cory Hargus, Robert T. McGibbon, Ka-Hei Law, Brent A. Gregersen, Je-Luen Li, Kim Palmo, Karthik Siva, Michael Bergdorf, John L. Klepeis, David E. Shaw
Publikováno v:
Scientific Data, Vol 8, Iss 1, Pp 1-9 (2021)
Measurement(s) Molecular Interaction Process • interaction energy • energy Technology Type(s) ab initio quantum chemistry computational method Factor Type(s) molecular entity Machine-accessible metadata file describing the reported data: https://
Externí odkaz:
https://doaj.org/article/df499c8fd96d49e28bfb321073fd8e1f
Autor:
Robert T. McGibbon, Elizabeth Decolvenaere, Karthik Siva, Je-Luen Li, John L. Klepeis, Alexander G. Donchev, Andrew G. Taube, Ka-Hei Law, David E. Shaw, Kim Palmo, Brent A. Gregersen, Cory Hargus, Michael Bergdorf
Publikováno v:
Scientific Data, Vol 8, Iss 1, Pp 1-9 (2021)
Scientific Data
Scientific Data
Advances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 di
Autor:
Robert T. McGibbon, Carlos X. Hernández, Brooke E. Husic, Christian R. Schwantes, Peter Eastman, Vijay S. Pande, Mohammad M. Sultan, Matthew P. Harrigan, Kyle A. Beauchamp
Publikováno v:
Biophysical Journal. 112:10-15
MSMBuilder is a software package for building statistical models of high-dimensional time-series data. It is designed with a particular focus on the analysis of atomistic simulations of biomolecular dynamics such as protein folding and conformational
Publikováno v:
Journal of chemical theory and computation, vol 12, iss 2
Wang, LP; McGibbon, RT; Pande, VS; & Martinez, TJ. (2016). Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. Journal of Chemical Theory and Computation, 12(2), 638-649. doi: 10.1021/acs.jctc.5b00830. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/1tg8t7k1
Wang, LP; McGibbon, RT; Pande, VS; & Martinez, TJ. (2016). Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. Journal of Chemical Theory and Computation, 12(2), 638-649. doi: 10.1021/acs.jctc.5b00830. UC Davis: Retrieved from: http://www.escholarship.org/uc/item/1tg8t7k1
© 2015 American Chemical Society. We describe a flexible and broadly applicable energy refinement method, "nebterpolation," for identifying and characterizing the reaction events in a molecular dynamics (MD) simulation. The new method is applicable
Autor:
Felipe Hernández, John L. Klepeis, Cory Hargus, Robert T. McGibbon, Andrew G. Taube, Ka-Hei Law, David E. Shaw, Alexander G. Donchev, Karthik Siva
Publikováno v:
The Journal of chemical physics. 147(16)
Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as bindi
Publikováno v:
The Journal of Physical Chemistry B. 118:6475-6481
Markov state models provide a powerful framework for the analysis of biomolecular conformation dynamics in terms of their metastable states and transition rates. These models provide both a quantitative and comprehensible description of the long-time
Autor:
Andrew C. Simmonett, Bernard R. Brooks, Jason M. Swails, Rafal P. Wiewiora, Robert T. McGibbon, Peter Eastman, John D. Chodera, Kyle A. Beauchamp, Vijay S. Pande, Lee-Ping Wang, Chaya D. Stern, Yutong Zhao, Matthew P. Harrigan
Publikováno v:
PLoS Computational Biology, Vol 13, Iss 7, p e1005659 (2017)
PLoS computational biology, vol 13, iss 7
PLoS Computational Biology
PLoS computational biology, vol 13, iss 7
PLoS Computational Biology
OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9c6af50dcc8d8d8e0cc990eec49d774a
https://doi.org/10.1101/091801
https://doi.org/10.1101/091801
Autor:
Robert T. McGibbon, Vijay S. Pande
Publikováno v:
Journal of Chemical Theory and Computation. 9:2900-2906
Statistical modeling of long timescale dynamics with Markov state models (MSMs) has been shown to be an effective strategy for building quantitative and qualitative insight into protein folding processes. Existing methodologies, however, rely on geom
Publikováno v:
The Journal of chemical physics. 145(19)
As molecular dynamics simulations access increasingly longer time scales, complementary advances in the analysis of biomolecular time-series data are necessary. Markov state models offer a powerful framework for this analysis by describing a system