Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Robert Haslhofer"'
Publikováno v:
Acta Mathematica. 228:217-301
Publikováno v:
Proceedings of the American Mathematical Society. 149:1239-1245
It is a fundamental open problem for the mean curvature flow, and in fact for many partial differential equations, whether or not all blowup limits are selfsimilar. In this short note, we prove that for the mean curvature flow of mean convex surfaces
Publikováno v:
American Journal of Mathematics. 142:1877-1896
We prove that for the mean curvature flow of two-convex hypersurfaces the intrinsic diameter stays uniformly controlled as one approaches the first singular time. We also derive sharp $L^{n-1}$-estimates for the regularity scale of the level set flow
Autor:
Robert Haslhofer
In this short note, we observe that the Bamler-Kleiner proof of uniqueness and stability for 3-dimensional Ricci flow through singularities generalizes to singular Ricci flows in higher dimensions that satisfy an analogous canonical neighborhood prop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f847aacb04ff6263366228addf968898
http://arxiv.org/abs/2110.03412
http://arxiv.org/abs/2110.03412
Autor:
Robert Haslhofer, Esther Cabezas-Rivas
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2020:217-239
We study Brownian motion and stochastic parallel transport on Perelman’s almost Ricci flat manifold ℳ = M × 𝕊 N × I {\mathcal{M}=M\times\mathbb{S}^{N}\times I} , whose dimension depends on a parameter N unbounded from above. We construct seq
We establish effective existence and uniqueness for the heat flow on time-dependent Riemannian manifolds, under minimal assumptions tailored towards the study of Ricci flow through singularities. The main point is that our estimates only depend on an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6915c423547838c8b93924577047e228
Recall that if $(M^n,g)$ satisfies $\mathrm{Ric}\geq 0$, then the Li-Yau Differential Harnack Inequality tells us for each nonnegative $f:M\to \mathbb{R}^+$, with $f_t$ its heat flow, that $\frac{\Delta f_t}{f_t}-\frac{|\nabla f_t|^2}{f_t^2} +\frac{n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a1ac54b60da3bded8df0d34549d6176
Autor:
Aaron Naber, Robert Haslhofer
Publikováno v:
Journal of the European Mathematical Society. 20:1269-1302