Zobrazeno 1 - 10
of 166
pro vyhledávání: '"Robert F. Tichy"'
Publikováno v:
Indagationes Mathematicae
Let $r\ge 1$ be an integer and ${\bf U}:=\{U_n\}_{n\ge 0}$ be the Lucas sequence given by $U_0=0,~U_1=1$, and $U_{n+2}=rU_{n+1}+U_n$ for $n\ge 0$. In this paper, we explain how to find all the solutions of the Diophantine equation, $AU_{n}+BU_{m}=CU_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71011c3d48e627fecbb2109529335502
https://hdl.handle.net/21.11116/0000-000A-2699-F21.11116/0000-000A-269B-D
https://hdl.handle.net/21.11116/0000-000A-2699-F21.11116/0000-000A-269B-D
Publikováno v:
Research in Number Theory
Let $$\{U_n\}_{n \ge 0}$$ { U n } n ≥ 0 and $$\{V_m\}_{m \ge 0}$$ { V m } m ≥ 0 be two linear recurrence sequences. We establish an asymptotic formula for the number of integers c in the range $$[-x, x]$$ [ - x , x ] which can be represented as d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46cfc60d20dd021322afadbfe6d35c0b
http://arxiv.org/abs/2008.00844
http://arxiv.org/abs/2008.00844
Autor:
Dijana Kreso, Robert F. Tichy
Publikováno v:
Periodica Mathematica Hungarica
We study Diophantine equations of type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt}
Publikováno v:
Uniform distribution theory. 11:1-21
In this paper we consider an optimization problem for Cesàro means of bivariate functions. We apply methods from uniform distribution theory, calculus of variations and ideas from the theory of optimal transport.
Publikováno v:
Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations ISBN: 9783319688480
We study the asymptotic behaviour of the solutions of a functionaldifferential equation with rescaling, the so-called pantograph equation. From this we derive asymptotic information about the zeros of these solutions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::45f3fa91a71c476ec20d777bef0e95f4
https://doi.org/10.1007/978-3-319-68849-7_10
https://doi.org/10.1007/978-3-319-68849-7_10
Publikováno v:
Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan ISBN: 9783319724553
We survey a QMC approach to integral equations and develop some new applications to risk modeling. In particular, a rigorous error bound derived from Koksma-Hlawka type inequalities is achieved for certain expectations related to the probability of r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7cd29b6f33a7bcfe85b52ae6f932beee
https://doi.org/10.1007/978-3-319-72456-0_47
https://doi.org/10.1007/978-3-319-72456-0_47
Publikováno v:
Indagationes Mathematicae. 26:823-841
Encouraged by the study of extremal limits for sums of the form lim N → ∞ 1 N ∑ n = 1 N c ( x n , y n ) with uniformly distributed sequences { x n } , { y n } the following extremal problem is of interest max γ ∫ [ 0 , 1 ] 2 c ( x , y ) γ (
Autor:
Robert F. Tichy, István Berkes
Publikováno v:
Proceedings of the American Mathematical Society. 144:2053-2066
Autor:
Sumaia Saad Eddin, Friedrich Pillichshammer, Robert F. Tichy, Christoph Aistleitner, Gerhard Larcher
Publikováno v:
Monatshefte Fur Mathematik
In the present paper we study the asymptotic behavior of trigonometric products of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e38cbc57973629cf4c1026342b5e3159
http://arxiv.org/abs/1609.04929
http://arxiv.org/abs/1609.04929
We prove that for a positive integer [Formula: see text] the primes in certain kinds of intervals cannot distribute too “uniformly” among the reduced residue classes modulo [Formula: see text]. Hereby, we prove a generalization of a conjecture of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca6a972950ffb22e6452ac96c0cb7a07