Zobrazeno 1 - 10
of 215
pro vyhledávání: '"Robert EYMARD"'
Publikováno v:
Comptes Rendus. Mécanique. 350:1-13
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2022, 330, pp.208-236
Journal of Differential Equations, Elsevier, 2022, 330, pp.208-236
International audience; We approximate the solution to some linear and degenerate quasi-linear problem involving a linear elliptic operator (like the semi-discrete in time implicit Euler approximation of Richards and Stefan equations) with measure ri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62750420eb5f40d799708567ca2f64b4
http://arxiv.org/abs/2205.07698
http://arxiv.org/abs/2205.07698
Autor:
Bubpha Jitsom, Surattana Sungnul, Sekson Sirisubtawee, Robert Eymard, Sutthisak Phongthanapanich, Kanokwarun Para
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 101
In this paper, we apply the characteristic finite volume method (CFVM) for solving a convection-diffusion problem on two-dimensional triangular grids. The finite volume method is used to discretize the equation while the finite element method is appl
Autor:
Kanokwarun Para, Bubpha Jitsom, Robert EYMARD, Surattana Sungnul, Sekson Sirisubtawee, Sutthisak Phongthanapanich
Publikováno v:
HAL
In this paper, we apply the characteristic finite volume method (CFVM) for solving a convection-diffusion problem on two-dimensional triangular grids. The finite volume method is used to discretize the equation while the finite element method is appl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::fdb281ef33d5c41ce7871cefe0d9f714
https://hal.archives-ouvertes.fr/hal-03319127
https://hal.archives-ouvertes.fr/hal-03319127
Convergence of nonlinear numerical approximations for an elliptic linear problem with irregular data
Autor:
David Maltese, Robert Eymard
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (6), pp.3043-3089
HAL
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (6), pp.3043-3089. ⟨10.1051/m2an/2021079⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (6), pp.3043-3089
HAL
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2021, 55 (6), pp.3043-3089. ⟨10.1051/m2an/2021079⟩
This work is devoted to the study of the approximation, using two nonlinear numerical methods, of a linear elliptic problem with measure data and heterogeneous anisotropic diffusion matrix. Both methods show convergence properties to a continuous sol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81852698507412ec4871c9938a03b4f5
https://hal.archives-ouvertes.fr/hal-03105385/file/entsoluni_em_final.pdf
https://hal.archives-ouvertes.fr/hal-03105385/file/entsoluni_em_final.pdf
Publikováno v:
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2022, 42 (1), pp.165-198
HAL
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2022, 42 (1), pp.165-198
HAL
In this paper we study the conforming Galerkin approximation of the problem: find $u\in{{\mathcal{U}}}$ such that $a(u,v) = \langle L, v \rangle $ for all $v\in{{\mathcal{V}}}$, where ${{\mathcal{U}}}$ and ${{\mathcal{V}}}$ are Hilbert or Banach spac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9881912175f72f1119f6389965312d6c
https://hal.archives-ouvertes.fr/hal-02264895v3/document
https://hal.archives-ouvertes.fr/hal-02264895v3/document
Autor:
Robert Eymard, Jérôme Droniou
Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::748c2fe21b65d8141415e033067962b4
http://arxiv.org/abs/2003.09067
http://arxiv.org/abs/2003.09067
Autor:
Robert Eymard, Jérôme Droniou
Publikováno v:
SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020, 58 (1), pp.153-188
HAL
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2020, 58 (1), pp.153-188
HAL
International audience; We present and analyse a numerical framework for the approximation of nonlinear degenerate elliptic equations of the Stefan or porous medium types. This framework is based on piecewise constant approximations for the functions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ba90fb3048b68125d94c9489974a4fc
https://hal.science/hal-02016807
https://hal.science/hal-02016807
Publikováno v:
Polyhedral Methods in Geosciences
Prof. Daniele Antonio Di Pietro, Prof. Luca Formaggia, Prof. Roland Masson. Polyhedral Methods in Geosciences, Springer, 2021, SEMA SIMAI Springer Series, 978-3-030-69362-6
HAL
Polyhedral Methods in Geosciences ISBN: 9783030693626
Prof. Daniele Antonio Di Pietro, Prof. Luca Formaggia, Prof. Roland Masson. Polyhedral Methods in Geosciences, Springer, 2021, SEMA SIMAI Springer Series, 978-3-030-69362-6
HAL
Polyhedral Methods in Geosciences ISBN: 9783030693626
International audience; In this work we present a generic framework for non-conforming finite elements on poly-topal meshes, characterised by elements that can be generic polygons/polyhedra. We first present the functional framework on the example of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::614a48ca71517a924709c39cf5cf1323
Publikováno v:
18th Conference on Scientific Computing
18th Conference on Scientific Computing, Mar 2009, Podbanské, Slovakia
HAL
18th Conference on Scientific Computing, Mar 2009, Podbanské, Slovakia
HAL
International audience; In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e63a60e9ef6cb8e51704aaa591359d85