Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Robert E. Hartwig"'
Publikováno v:
The Electronic Journal of Linear Algebra. 34:514-525
New expressions are given for the Moore-Penrose inverse of a product $AB$ of two complex matrices. Furthermore, an expression for $(AB)\dg - B\dg A\dg$ for the case where $A$ or $B$ is of full rank is provided. Necessary and sufficient conditions for
Autor:
Robert E. Hartwig, Pedro Patrício
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We shall derive necessary and sufficient conditions for the nivellateur to have a group inverse over an algebraically closed field. We then extend these results to arbitrary fields.
Partially supported by FCT-'Fundacao para a Ciencia e a Tecnolo
Partially supported by FCT-'Fundacao para a Ciencia e a Tecnolo
Autor:
Pedro Patrício, Robert E. Hartwig
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
We shall use the minus partial order combined with Pierce’s decomposition to derive the class of outer inverses for idempotents, units and group invertible elements. Subsequently we show, for matrices over a field F, that the triplet BA^ C is invar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::837650e7e1551f55e8ae5cabd5c95322
Autor:
Pedro Patrício, Robert E. Hartwig
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
In this paper, we examine the question of regularity of sums of special elements that appear in the study of orthogonality and invertibility.
FEDER Funds through "Programa Operacional Factores de Competitividade - COMPETE'' and by Portuguese Fun
FEDER Funds through "Programa Operacional Factores de Competitividade - COMPETE'' and by Portuguese Fun
Autor:
Robert E. Hartwig, Xuzhou Chen
Publikováno v:
American Journal of Computational Mathematics. :63-71
For an invertible diagonal matrix D , the convergence of the power scaled matrix sequence N N D A is investigated. As a special case, necessary and sufficient conditions are given for the convergence of NN D T , where T is triangular. These c
Autor:
Xuzhou Chen, Robert E. Hartwig
Publikováno v:
Linear and Multilinear Algebra. 54:329-341
The convergence behavior of the Picard iteration Xk+1=AXk+B and the weighted case Yk=Xk/bk is investigated. It is shown that the convergence of both these iterations is related to the so-called effective spectrum of A with respect to some matrix. As
Autor:
Robert E. Hartwig
Publikováno v:
The American Mathematical Monthly. 113:250-256
(2006). Note on a Linear Difference Equation. The American Mathematical Monthly: Vol. 113, No. 3, pp. 250-256.
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
A class of sufficient conditions is given to ensure that the sum a+b in a ring R, is equivalent to a sum x + y, which is an orthogonal Pierce decomposition. This is then used to show that a lower triangular matrix, with a regular diagonal is equivale
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 27:757-771
Two representations for the Drazin inverse of a $2\times2$ block matrix $M=[{A \atop C}\;{B \atop D}]$, where $A$ and $D$ are square matrices, in terms of the Drazin inverses of $A$ and $D$ have been recently developed under the assumptions that $C(I
Autor:
Robert E. Hartwig, Xuzhou Chen
Publikováno v:
Numerical Linear Algebra with Applications. 12:895-910
The semi-iterative method (SIM) is applied to the hyper-power (HP) iteration, and necessary and sufficient conditions are given for the convergence of the semi-iterative–hyper-power (SIM–HP) iteration. The root convergence rate is computed for bo