Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Road obstacle"'
Publikováno v:
Inventions, Vol 9, Iss 4, p 69 (2024)
Obstacle avoidance is essential for the effective operation of autonomous mobile robots, enabling them to detect and navigate around obstacles in their environment. While deep learning provides significant benefits for autonomous navigation, it typic
Externí odkaz:
https://doaj.org/article/aeb29a3c227f43a5aa4af9d5cf05d190
Publikováno v:
Journal of Mechanical Engineering, Vol 72, Iss 3, Pp 19-26 (2022)
Investigation of road vehicles in term of their dynamics is very important task. There are assessed two main points of view, i.e. the driving safety and ride comfort for passenger. This article is aimed at analysis of dynamics of a single-axle traile
Externí odkaz:
https://doaj.org/article/a8c4b1692cc2478cadde69608f8404b0
Publikováno v:
Array, Vol 18, Iss , Pp 100283- (2023)
There are various types of obstacles in an emergency, and the traffic environment is complicated. It is critical to detect obstacles accurately and quickly in order to improve traffic safety. The obstacle detection algorithm based on deep learning ca
Externí odkaz:
https://doaj.org/article/477d19aa8ef7486784ed021673784d6c
Publikováno v:
Proceedings of the XXth Conference of Open Innovations Association FRUCT, Vol 31, Iss 1, Pp 237-244 (2022)
This paper is devoted to the detection of objects on a road, performed with a combination of two methods based on both the use of depth information and video analysis of data from a stereo camera. Since neither the time of the appearance of an object
Externí odkaz:
https://doaj.org/article/148c5e0d2ad7441aae295ea47c51a27a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Sensors, Vol 20, Iss 24, p 7089 (2020)
Due to deep learning’s accurate cognition of the street environment, the convolutional neural network has achieved dramatic development in the application of street scenes. Considering the needs of autonomous driving and assisted driving, in a gene
Externí odkaz:
https://doaj.org/article/6f38d6df45a0419aabe73aac5540e13d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Klinger, Manuel
Die Zahl der E-Scooter hat in j��ngster Vergangenheit vor allem im st��dtischen Bereich stark zugenommen. 2019 erfolgte eine weitgehende gesetzliche Gleichstellung zu Fahrr��dern im Stra��enverkehr in ��sterreich. In der vorliegen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::75496c0d3156eb1017e5c3fca7493a9c
Publikováno v:
Sensors (Basel, Switzerland)
Sensors
Volume 20
Issue 24
Sensors, Vol 20, Iss 7089, p 7089 (2020)
Sensors
Volume 20
Issue 24
Sensors, Vol 20, Iss 7089, p 7089 (2020)
Due to deep learning&rsquo
s accurate cognition of the street environment, the convolutional neural network has achieved dramatic development in the application of street scenes. Considering the needs of autonomous driving and assisted driving,
s accurate cognition of the street environment, the convolutional neural network has achieved dramatic development in the application of street scenes. Considering the needs of autonomous driving and assisted driving,