Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Rivi, Marzia"'
Autor:
Rivi, Marzia, Miller, Lance
Publikováno v:
Astronomy & Computing vol.39(2022) 100574
The new generation radio telescopes, such as the Square Kilometre Array (SKA), are expected to reach sufficient sensitivity and resolution to provide large number densities of resolved faint sources, and therefore to open weak gravitational lensing o
Externí odkaz:
http://arxiv.org/abs/2203.14071
Autor:
Square Kilometre Array Cosmology Science Working Group, Bacon, David J., Battye, Richard A., Bull, Philip, Camera, Stefano, Ferreira, Pedro G., Harrison, Ian, Parkinson, David, Pourtsidou, Alkistis, Santos, Mario G., Wolz, Laura, Abdalla, Filipe, Akrami, Yashar, Alonso, David, Andrianomena, Sambatra, Ballardini, Mario, Bernal, Jose Luis, Bertacca, Daniele, Bengaly, Carlos A. P., Bonaldi, Anna, Bonvin, Camille, Brown, Michael L., Chapman, Emma, Chen, Song, Chen, Xuelei, Cunnington, Steven, Davis, Tamara M., Dickinson, Clive, Fonseca, Jose, Grainge, Keith, Harper, Stuart, Jarvis, Matt J., Maartens, Roy, Maddox, Natasha, Padmanabhan, Hamsa, Pritchard, Jonathan R., Raccanelli, Alvise, Rivi, Marzia, Roychowdhury, Sambit, Sahlen, Martin, Schwarz, Dominik J., Siewert, Thilo M., Viel, Matteo, Villaescusa-Navarro, Francisco, Xu, Yidong, Yamauchi, Daisuke, Zuntz, Joe
Publikováno v:
Publ. Astron. Soc. Austral. 37 (2020) e007
We present a detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1), and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and lo
Externí odkaz:
http://arxiv.org/abs/1811.02743
We explore a new Bayesian method of detecting galaxies from radio interferometric data of the faint sky. Working in the Fourier domain, we fit a single, parameterised galaxy model to simulated visibility data of star-forming galaxies. The resulting m
Externí odkaz:
http://arxiv.org/abs/1810.12930
Autor:
Rivi, Marzia, Miller, Lance
Publikováno v:
MNRAS 2018, 476 (2): 2053-2062
This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper we focused on the development and testing of the method for the simple case of indi
Externí odkaz:
http://arxiv.org/abs/1709.01827
With the increasing size and complexity of data produced by large scale numerical simulations, it is of primary importance for scientists to be able to exploit all available hardware in heterogenous High Performance Computing environments for increas
Externí odkaz:
http://arxiv.org/abs/1606.04427
Publikováno v:
MNRAS 2016, 463 (2): 1881-1890
The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radi
Externí odkaz:
http://arxiv.org/abs/1603.04784
Observationally, weak lensing has been served so far by optical surveys due to the much larger number densities of background galaxies achieved, which is typically by two to three orders of magnitude compared to radio. However, the high sensitivity o
Externí odkaz:
http://arxiv.org/abs/1602.05836
Publikováno v:
Astronomy and Computing 2014, 5: 9-18
Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very
Externí odkaz:
http://arxiv.org/abs/1309.1114
The scientific community is presently witnessing an unprecedented growth in the quality and quantity of data sets coming from simulations and real-world experiments. To access effectively and extract the scientific content of such large-scale data se
Externí odkaz:
http://arxiv.org/abs/1004.1302
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.