Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Rivas, Ivonne"'
Autor:
Esquivel, Liliana, Rivas, Ivonne
Publikováno v:
In Nonlinear Analysis: Real World Applications February 2025 81
We consider a linear Korteweg-de Vries equation on a bounded domain with a left Dirichlet boundary control.The controllability to the trajectories of such a system was proved in the last decade by using Carleman estimates.Here, we go a step further b
Externí odkaz:
http://arxiv.org/abs/1804.06209
Autor:
Sun, Chenmin, Rivas, Ivonne
The internal control problem for the Kadomstev-Petviashvili II equation, known as KP-II, is the object of study in this paper. The controllability in $L^2(T)$ from vertical strip is proved using the Hilbert Unique Method through the techniques of sem
Externí odkaz:
http://arxiv.org/abs/1711.09359
Publikováno v:
Analysis & PDE 10 (2017) 1089-1122
We study the exponential stabilization problem for a nonlinear Korteweg-de Vries equa- tion on bounded interval in cases where the linearized control system is not controllable. The system has Dirichlet boundary conditions at the end-points of the in
Externí odkaz:
http://arxiv.org/abs/1702.04016
Autor:
Rivas, Ivonne
This thesis concerns the well-posedness and controllability of certain dispersive partial differential equations. The first part focuses on an initial boundary value problem (IBVP) for the Korteweg-de Vries equation posed on a bounded interval with s
Externí odkaz:
http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321371582
This paper is devoted to study boundary controllability of the Korteweg-de Vries equation posed on a finite interval, in which, because of the third-order character of the equation, three boundary conditions are required to secure the well-posedness
Externí odkaz:
http://arxiv.org/abs/1209.3543
In this paper, we study a class of initial-boundary value problems for the Korteweg-de Vries equation posed on a bounded domain $(0,L)$. We show that the initial-boundary value problem is locally well-posed in the classical Sobolev space $H^s(0,L)$ f
Externí odkaz:
http://arxiv.org/abs/1012.1057
In this paper, we study a class of initial boundary value problem (IBVP) of the Korteweg- de Vries equation posed on a finite interval with nonhomogeneous boundary conditions. The IBVP is known to be locally well-posed, but its global $L^2 $ a priori
Externí odkaz:
http://arxiv.org/abs/1010.4658
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.