Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Rita S, Cha"'
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Waskiewicz et al. identify functionally important and evolutionarily conserved residues of ATM/ATR via data mining and a functional genetic analysis, finding that loss of the intrinsic kinase activity occurs infrequently in carcinogenesis. This study
Externí odkaz:
https://doaj.org/article/a3ab37abd19345cbb306b4a4b5e50121
Publikováno v:
Microbial Cell, Vol 6, Iss 6, Pp 286-294 (2019)
Ribonucleotide reductase (RNR) is an essential holoenzyme required for de novo synthesis of dNTPs. The Saccharomyces cerevisiae genome encodes for two catalytic subunits, Rnr1 and Rnr3. While Rnr1 is required for DNA replication and DNA damage repair
Externí odkaz:
https://doaj.org/article/ae93b009a3c14805bceb4ce2e6c9a37f
Publikováno v:
Biology Open, Vol 4, Iss 12, Pp 1739-1743 (2015)
Inactivation of Mec1, the budding yeast ATR, results in a permanent S phase arrest followed by chromosome breakage and cell death during G2/M. The S phase arrest is proposed to stem from a defect in Mec1-mediated degradation of Sml1, a conserved inhi
Externí odkaz:
https://doaj.org/article/8d91a02359ab4df6b3e3f909010b498c
Autor:
Ana Penedos, Anthony L Johnson, Emily Strong, Alastair S Goldman, Jesús A Carballo, Rita S Cha
Publikováno v:
PLoS ONE, Vol 11, Iss 4, p e0154170 (2016)
Externí odkaz:
https://doaj.org/article/e28281091d544f5990a4b24306ae29a5
Autor:
Ana Penedos, Anthony L Johnson, Emily Strong, Alastair S Goldman, Jesús A Carballo, Rita S Cha
Publikováno v:
PLoS ONE, Vol 10, Iss 7, p e0134297 (2015)
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a
Externí odkaz:
https://doaj.org/article/d06579c5789c4af8b5dd7cfcaa1b8bf3
Publikováno v:
Microbial Cell, Vol 6, Iss 6, Pp 286-294 (2019)
Microbial Cell
Microbial Cell (Graz, Austria)
Microbial Cell (Graz, Austria), 2019, 6 (6), pp.286--294. ⟨10.15698/mic2019.06.680⟩
Microbial Cell
Microbial Cell (Graz, Austria)
Microbial Cell (Graz, Austria), 2019, 6 (6), pp.286--294. ⟨10.15698/mic2019.06.680⟩
International audience; Ribonucleotide reductase (RNR) is an essential holoenzyme required for de novo synthesis of dNTPs. The Saccharomyces cerevisiae genome encodes for two catalytic subunits, Rnr1 and Rnr3. While Rnr1 is required for DNA replicati
Publikováno v:
Current Genetics. 65:657-661
The ataxia-telangiectasia mutated/ATM and Rad3-related (ATM/ATR) family proteins are evolutionarily conserved serine/threonine kinases best known for their roles in mediating the DNA damage response. Upon activation, ATM/ATR phosphorylate numerous ta
Publikováno v:
PLoS Genetics, Vol 9, Iss 11, p e1003931 (2013)
Mammalian common fragile sites are loci of frequent chromosome breakage and putative recombination hotspots. Here, we utilized Replication Slow Zones (RSZs), a budding yeast homolog of the mammalian common fragile sites, to examine recombination acti
Externí odkaz:
https://doaj.org/article/ac066d8354b140df9ba4bb5c0051ee4d
Autor:
Jesús A Carballo, Silvia Panizza, Maria Elisabetta Serrentino, Anthony L Johnson, Marco Geymonat, Valérie Borde, Franz Klein, Rita S Cha
Publikováno v:
PLoS Genetics, Vol 9, Iss 6, p e1003545 (2013)
An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level,
Externí odkaz:
https://doaj.org/article/fd1c7b0c3f644815a3617a377e3c66da
Publikováno v:
PLoS Genetics, Vol 8, Iss 10, p e1002978 (2012)
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of m
Externí odkaz:
https://doaj.org/article/81b5b07e92e94ffbb0fdc0b75902de12