Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Risi Kondor"'
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 2, p 025044 (2024)
Many learning tasks, including learning potential energy surfaces from ab initio calculations, involve global spatial symmetries and permutational symmetry between atoms or general particles. Equivariant graph neural networks are a standard approach
Externí odkaz:
https://doaj.org/article/8a01d8ecfa0d451d91b51ebe7e83e865
Publikováno v:
PRX Quantum, Vol 4, Iss 2, p 020327 (2023)
We develop a theoretical framework for S_{n}-equivariant convolutional quantum circuits with SU(d) symmetry, building on and significantly generalizing Jordan’s permutational quantum computing formalism based on Schur-Weyl duality connecting both S
Externí odkaz:
https://doaj.org/article/301b538557cd4806bc6db55757f2c356
Autor:
Truong Son Hy, Risi Kondor
Publikováno v:
Machine Learning: Science and Technology, Vol 4, Iss 1, p 015031 (2023)
In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs hi
Externí odkaz:
https://doaj.org/article/e1a033e3a46c4df6bb2702bdf34db600
Autor:
Lars A Bratholm, Will Gerrard, Brandon Anderson, Shaojie Bai, Sunghwan Choi, Lam Dang, Pavel Hanchar, Addison Howard, Sanghoon Kim, Zico Kolter, Risi Kondor, Mordechai Kornbluth, Youhan Lee, Youngsoo Lee, Jonathan P Mailoa, Thanh Tu Nguyen, Milos Popovic, Goran Rakocevic, Walter Reade, Wonho Song, Luka Stojanovic, Erik H Thiede, Nebojsa Tijanic, Andres Torrubia, Devin Willmott, Craig P Butts, David R Glowacki
Publikováno v:
PLoS ONE, Vol 16, Iss 7, p e0253612 (2021)
The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in adva
Externí odkaz:
https://doaj.org/article/7bd641a416ff403b90f3c0a0e9726773
Publikováno v:
Soft Matter. 16:435-446
It is difficult to quantify structure-property relationships and to identify structural features of complex materials. The characterization of amorphous materials is especially challenging because their lack of long-range order makes it difficult to
Autor:
Alexander Bogatskiy, Sanmay Ganguly, Thomas Kipf, Risi Kondor, Miller, David W., Daniel Murnane, Jan Tuzlić Offermann, Mariel Pettee, Phiala Shanahan, Chase Shimmin, Savannah Thais
Publikováno v:
Jan Tuzlić Offermann
Physical theories grounded in mathematical symmetries are an essential component of our understanding of a wide range of properties of the universe. Similarly, in the domain of machine learning, an awareness of symmetries such as rotation or permutat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d97018db7867269ab7971f4186d23d3
Publikováno v:
INSPIRE-HEP
We develop a theoretical framework for $S_n$-equivariant quantum convolutional circuits, building on and significantly generalizing Jordan's Permutational Quantum Computing (PQC) formalism. We show that quantum circuits are a natural choice for Fouri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1a810b7716e15880892b272840f2e4b
http://arxiv.org/abs/2112.07611
http://arxiv.org/abs/2112.07611
Autor:
Truong Son Hy, Risi Kondor
In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8ffb942a6d77d4a1247c4f60d93aea8
A community-powered search of machine learning strategy space to find NMR property prediction models
Autor:
Zico Kolter, Mordechai Kornbluth, Sanghoon Kim, Lars Andersen Bratholm, Risi Kondor, Jonathan P. Mailoa, Youngsoo Lee, Lam Dang, Goran Rakocevic, Brandon Anderson, Shaojie Bai, Will Gerrard, Milos R. Popovic, David R. Glowacki, Sunghwan Choi, Craig P. Butts, Thanh Tu Nguyen, Devin Willmott, Erik H. Thiede, Luka Stojanovic, Youhan Lee, Nebojsa Tijanic, Addison Howard, Wonho Song, Walter Reade, Andres Torrubia, Pavel Hanchar
Publikováno v:
PLoS ONE, Vol 16, Iss 7, p e0253612 (2021)
Bratholm, L A, Gerrard, W, Anderson, B, Bai, S, Choi, S, Dang, L, Hanchar, P, Howard, A, Kim, S, Kolter, Z, Kondor, R, Kornbluth, M, Lee, Y, Lee, Y, Mailoa, J P, Nguyen, T T, Popovic, M, Rakocevic, G, Reade, W, Song, W, Stojanovic, L, Thiede, E H, Tijanic, N, Torrubia, A, Willmott, D, Butts, C P & Glowacki, D R 2021, ' A community-powered search of machine learning strategy space to find NMR property prediction models ', PLoS ONE, vol. 16, no. 7, e0253612 . https://doi.org/10.1371/journal.pone.0253612
PLoS ONE
Bratholm, L A, Gerrard, W, Anderson, B, Bai, S, Choi, S, Dang, L, Hanchar, P, Howard, A, Kim, S, Kolter, Z, Kondor, R, Kornbluth, M, Lee, Y, Lee, Y, Mailoa, J P, Nguyen, T T, Popovic, M, Rakocevic, G, Reade, W, Song, W, Stojanovic, L, Thiede, E H, Tijanic, N, Torrubia, A, Willmott, D, Butts, C P & Glowacki, D R 2021, ' A community-powered search of machine learning strategy space to find NMR property prediction models ', PLoS ONE, vol. 16, no. 7, e0253612 . https://doi.org/10.1371/journal.pone.0253612
PLoS ONE
The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in adva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::672ab3f6c2ed91044cbf5995b3323ede
http://arxiv.org/abs/2008.05994
http://arxiv.org/abs/2008.05994
Autor:
Townshend, Raphael J L, Vögele, Martin, Suriana, Patricia, Derry, Alexander, Powers, Alexander, Yianni Laloudakis, Sidhika Balachandar, Anderson, Brandon, Eismann, Stephan, Risi Kondor, Altman, Russ B, Dror, Ron O
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b2e739e4d20157812bb592b4183ce4c2