Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Risebro, N. H."'
The variational heat equation is a nonlinear, parabolic equation not in divergence form that arises as a model for the dynamics of the director field in a nematic liquid crystal. We present a finite difference scheme for a transformed, possibly degen
Externí odkaz:
http://arxiv.org/abs/1701.01265
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper we analyze operator splitting for the Benjamin-Ono equation, u_t = uu_x + Hu_xx, where H denotes the Hilbert transform. If the initial data are sufficiently regular, we show the convergence of both Godunov and Strang splitting.
Com
Com
Externí odkaz:
http://arxiv.org/abs/1311.1766
Autor:
Koley, U., Risebro, N. H.
We are concerned with the convergence of a numerical scheme for the initial value problem associated to the $2 \times 2$ Keyfitz-Kranzer system of equations. In this paper we prove the convergence of a finite difference scheme to a weak solution.
Externí odkaz:
http://arxiv.org/abs/1311.1754
We consider the numerical solution of scalar, nonlinear degenerate convection-diffusion problems with random diffusion coefficient and with random flux functions. Building on recent results on the existence, uniqueness and continuous dependence of we
Externí odkaz:
http://arxiv.org/abs/1311.1752
Autor:
Koley, U., Risebro, N. H.
We are concerned with the convergence of numerical schemes for the initial value problem associated to the Keyfitz-Kranzer system of equations. This system is a toy model for several important models such as in elasticity theory, magnetohydrodynamics
Externí odkaz:
http://arxiv.org/abs/1209.2000
In this paper, we design high order accurate and stable finite difference schemes for the initial-boundary value problem, associated with the magnetic induction equation with resistivity. We use Summation-By-Parts (SBP) finite difference operators to
Externí odkaz:
http://arxiv.org/abs/1102.0480
We consider semi-discrete first-order finite difference schemes for a nonlinear degenerate convection-diffusion equations in one space dimension, and prove an L1 error estimate. Precisely, we show that the L1 loc difference between the approximate so
Externí odkaz:
http://arxiv.org/abs/1102.0493
We establish rigorously convergence of a semi-discrete upwind scheme for the nonlinear variational wave equation $u_{tt} - c(u)(c(u) u_x)_x = 0$ with $u|_{t=0}=u_0$ and $u_t|_{t=0}=v_0$. Introducing Riemann invariants $R=u_t+c u_x$ and $S=u_t-c u_x$,
Externí odkaz:
http://arxiv.org/abs/0708.3736
Publikováno v:
SIAM Journal on Numerical Analysis, 2016 Jan 01. 54(2), 588-605.
Externí odkaz:
http://www.jstor.org/stable/43901581