Zobrazeno 1 - 10
of 1 357
pro vyhledávání: '"Ring of integers"'
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 21, Iss 3, Pp 302-309 (2024)
In this article, we find the Randić spectrum of the weakly zero-divisor graph of a finite commutative ring [Formula: see text] with identity [Formula: see text], denoted as [Formula: see text], where [Formula: see text] is taken as the ring of integ
Externí odkaz:
https://doaj.org/article/73f42b2bf66e4bd18889a67e51e8ceb5
Publikováno v:
AIMS Mathematics, Vol 9, Iss 2, Pp 4098-4108 (2024)
Let $ R $ be a ring and $ U(R) $ be the set of unit elements of $ R $. The unit graph $ G(R) $ of $ R $ is the graph whose vertices are all the elements of $ R $, defining distinct vertices $ x $ and $ y $ to be adjacent if and only if $ x + y \in U(
Externí odkaz:
https://doaj.org/article/e8c59be3628947f8ac3a57f5d09b4e8c
Autor:
Pirzada S., Altaf Aaqib
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 14, Iss 2, Pp 308-316 (2022)
Let R be a finite commutative ring. We define a co-unit graph, associated to a ring R, denoted by Gnu(R) with vertex set V(Gnu(R)) = U(R), where U(R) is the set of units of R, and two distinct vertices x, y of U(R) being adjacent if and only if x + y
Externí odkaz:
https://doaj.org/article/3ce870f600c74dd89274e632505c5aaf
Publikováno v:
Songklanakarin Journal of Science and Technology (SJST), Vol 44, Iss 5, Pp 1179-1184 (2022)
An element a in a ring R is said to be of (m, k)-type if a m = a k where m and k are positive integers with m > k ≥ 1. Let Xn(m, k) be the set of all (m, k)-type elements, X * n(m, k) be the set of all nonzero (m, k)-type elements, and Sn(m, k
Externí odkaz:
https://doaj.org/article/9c15297f72384706ae760db01c0eea9d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Vol 19, Iss 3, Pp 238-248 (2022)
AbstractLet R be a ring with unity. The cozero-divisor graph of a ring R, denoted by [Formula: see text] is an undirected simple graph whose vertices are the set of all non-zero and non-unit elements of R, and two distinct vertices x and y are adjace
Externí odkaz:
https://doaj.org/article/b54927487f3e4026bfba1174c370d01d
Autor:
Pirzada S., Bhat M. Imran
Publikováno v:
Acta Universitatis Sapientiae: Informatica, Vol 14, Iss 1, Pp 75-83 (2022)
For a commutative ring R with identity 1, the zero-divisor graph of R, denoted by Γ(R), is a simple graph whose vertex set is the set of non-zero zero divisors Z*(R) and the two vertices x and y ∈ Z*(R) are adjacent if and only if xy = 0. In this
Externí odkaz:
https://doaj.org/article/386c9af6be2e42dd9f3c3f1073a56a2b
Publikováno v:
AIMS Mathematics, Vol 7, Iss 10, Pp 18925-18947 (2022)
Let $ K = \mathbb{Q}(\sqrt{m}) $ be an imaginary quadratic field with $ O_K $ its ring of integers. Let $ \pi $ and $ \beta $ be an irreducible element and a nonzero element, respectively, in $ O_K $. In the authors' earlier work, it was proved for t
Externí odkaz:
https://doaj.org/article/03becc636d844a95b0f098fc49fd29fb
Publikováno v:
Mathematics, Vol 11, Iss 20, p 4310 (2023)
For a finite commutative ring R with identity 1≠0, the weakly zero-divisor graph of R denoted as WΓ(R) is a simple undirected graph having vertex set as a set of non-zero zero-divisors of R and two distinct vertices a and b are adjacent if and onl
Externí odkaz:
https://doaj.org/article/604848ab3daa4dc59ba45512df2b9d1a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.