Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Rim Shayakhmetov"'
Autor:
Rim Shayakhmetov, Maksim Kuznetsov, Alexander Zhebrak, Artur Kadurin, Sergey Nikolenko, Alexander Aliper, Daniil Polykovskiy
Publikováno v:
Frontiers in Pharmacology, Vol 11 (2020)
Externí odkaz:
https://doaj.org/article/8c95b2ea042a428eb8a82e2a89aee7f9
Autor:
Rim Shayakhmetov, Maksim Kuznetsov, Alexander Zhebrak, Artur Kadurin, Sergey Nikolenko, Alexander Aliper, Daniil Polykovskiy
Publikováno v:
Frontiers in Pharmacology, Vol 11 (2020)
Gene expression profiles are useful for assessing the efficacy and side effects of drugs. In this paper, we propose a new generative model that infers drug molecules that could induce a desired change in gene expression. Our model—the Bidirectional
Externí odkaz:
https://doaj.org/article/0edd70c8bac94eda9abfaa60b14171e0
Autor:
Alex Zhavoronkov, Vladimir Aladinskiy, Alexander Zhebrak, Bogdan Zagribelnyy, Victor Terentiev, Dmitry S. Bezrukov, Daniil Polykovskiy, Rim Shayakhmetov, Andrey Filimonov, Philipp Orekhov, Yilin Yan, Olga Popova, Quentin Vanhaelen, Alex Aliper, Yan Ivanenkov
The emergence of the 2019 novel coronavirus (COVID-19), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important COVID-19 protein targets is the 3C-like p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::601e216e080e00446bc9dff11a228e9e
https://doi.org/10.26434/chemrxiv.11829102.v2
https://doi.org/10.26434/chemrxiv.11829102.v2
Autor:
Alex Zhavoronkov, Vladimir Aladinskiy, Alexander Zhebrak, Bogdan Zagribelnyy, Victor Terentiev, Dmitry S. Bezrukov, Daniil Polykovskiy, Rim Shayakhmetov, Andrey Filimonov, Philipp Orekhov, Yilin Yan, Olga Popova, Quentin Vanhaelen, Alex Aliper, Yan Ivanenkov
The emergence of the 2019 novel coronavirus (2019-nCoV), for which there is no vaccine or any known effective treatment created a sense of urgency for novel drug discovery approaches. One of the most important 2019-nCoV protein targets is the 3C-like
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d40330871d5af2d3e1720f09f7177870
https://doi.org/10.26434/chemrxiv.11829102.v1
https://doi.org/10.26434/chemrxiv.11829102.v1
Autor:
Yan A. Ivanenkov, Alex Zhavoronkov, Mark S. Veselov, Rim Shayakhmetov, Anastasiya V Aladinskaya, Daniil Polykovskiy, Victor A Terentiev, Vladimir A. Aladinskiy, Bogdan A Zagribelnyy, Tao Guo, Artem Zholus, Yury Volkov, Alexander Zhebrak, Lennart H Lee, Li Xing, Lidiya I Minaeva, Richard Soll, Alán Aspuru-Guzik, Alexander Aliper, David Madge, Maksim Kuznetsov, Arip Asadulaev
Publikováno v:
Nature Biotechnology. 37:1038-1040
We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors
Autor:
Alexander Zhebrak, Denis Kuzminykh, Alex Zhavoronkov, Rim Shayakhmetov, Ivan Baskov, Sergey I. Nikolenko, Daniil Polykovskiy, Artur Kadurin
Publikováno v:
Molecular pharmaceutics. 15(10)
Convolutional neural networks (CNN) have been successfully used to handle three-dimensional data and are a natural match for data with spatial structure such as 3D molecular structures. However, a direct 3D representation of a molecule with atoms loc