Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Rik Wepfer"'
Autor:
Richard McKinley, Rik Wepfer, Fabian Aschwanden, Lorenz Grunder, Raphaela Muri, Christian Rummel, Rajeev Verma, Christian Weisstanner, Mauricio Reyes, Anke Salmen, Andrew Chan, Franca Wagner, Roland Wiest
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Abstract Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neura
Externí odkaz:
https://doaj.org/article/2d91ebaae8b1419a8505044be986094e
Autor:
Richard McKinley, Rik Wepfer, Lorenz Grunder, Fabian Aschwanden, Tim Fischer, Christoph Friedli, Raphaela Muri, Christian Rummel, Rajeev Verma, Christian Weisstanner, Benedikt Wiestler, Christoph Berger, Paul Eichinger, Mark Muhlau, Mauricio Reyes, Anke Salmen, Andrew Chan, Roland Wiest, Franca Wagner
Publikováno v:
NeuroImage: Clinical, Vol 25, Iss , Pp - (2020)
The detection of new or enlarged white-matter lesions is a vital task in the monitoring of patients undergoing disease-modifying treatment for multiple sclerosis. However, the definition of ‘new or enlarged’ is not fixed, and it is known that les
Externí odkaz:
https://doaj.org/article/035a787c92824863b1db963c3ded5beb
Autor:
Franca Wagner, Andrew Chan, Christian Weisstanner, Christian Rummel, Richard McKinley, Anke Salmen, Roland Wiest, Mauricio Reyes, Lorenz Grunder, Rik Wepfer, Rajeev Kumar Verma, Raphaela Muri, Fabian Aschwanden
Publikováno v:
McKinley, Richard; Wepfer, Rik; Aschwanden, Fabian; Grunder, Lorenz; Muri, Raphaela; Rummel, Christian; Verma, Rajeev; Weisstanner, Christian; Reyes, Mauricio; Salmen, Anke; Chan, Andrew; Wagner, Franca; Wiest, Roland (2021). Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Scientific reports, 11(1), p. 1087. Springer Nature 10.1038/s41598-020-79925-4
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
Scientific Reports
Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neural network
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fbdf90ae00628021e6eae6b68e5611f4
https://boris.unibe.ch/151640/1/s41598-020-79925-4.pdf
https://boris.unibe.ch/151640/1/s41598-020-79925-4.pdf
Autor:
Christian Rummel, Richard McKinley, Mark Mühlau, Franca Wagner, Roland Wiest, Christoph Friedli, Rajeev Kumar Verma, Fabian Aschwanden, Mauricio Reyes, Christoph Berger, Anke Salmen, Raphaela Muri, Tim Fischer, Benedikt Wiestler, Christian Weisstanner, Paul Eichinger, Andrew Chan, Rik Wepfer, Lorenz Grunder
Publikováno v:
McKinley, Richard; Wepfer, Rik; Grunder, Lorenz; Aschwanden, Fabian; Fischer, Tim; Friedli, Christoph; Muri, Raphaela; Rummel, Christian; Verma, Rajeev Kumar; Weisstanner, Christian; Wiestler, Benedikt; Berger, Christoph; Eichinger, Paul; Muehlau, Mark; Reyes, Mauricio; Salmen, Anke; Chan, Andrew; Wiest, Roland; Wagner, Franca (2020). Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. NeuroImage: Clinical, 25, p. 102104. Elsevier 10.1016/j.nicl.2019.102104
NeuroImage : Clinical
NeuroImage: Clinical, Vol 25, Iss, Pp-(2020)
NeuroImage : Clinical
NeuroImage: Clinical, Vol 25, Iss, Pp-(2020)
Highlights • We introduce a novel method, based on a neural network (DeepSCAN), for detecting lesion change in longitudinal MRI imaging in multiple sclerosis. • The method had a sensitivity of 1.00 and a positive predictive value of 0.59 for dete
Autor:
Franca Wagner, Mauricio Reyes, Roland Wiest, Richard McKinley, Rik Wepfer, Andrew T. Chan, Tom Gundersen
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783319555232
BrainLes@MICCAI
BrainLes@MICCAI
Biomedical image segmentation requires both voxel-level information and global context. We report on a deep convolutional architecture which combines a fully-convolutional network for local features and an encoder-decoder network in which convolution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0036c49f0445664db990ceef7bb98e5b
https://doi.org/10.1007/978-3-319-55524-9_12
https://doi.org/10.1007/978-3-319-55524-9_12