Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Rijubrata Kundu"'
Autor:
Rijubrata Kundu, Sudipa Mondal
Publikováno v:
Journal of Group Theory.
In this paper, we compute powers in the wreath product G ≀ S n G\wr S_{n} for any finite group 𝐺. For r ≥ 2 r\geq 2 a prime, consider ω r : G ≀ S n → G ≀ S n \omega_{r}\colon G\wr S_{n}\to G\wr S_{n} defined by g ↦ g r g\mapsto g^{r}
Given integers $k,l\geq 2$, where either $l$ is odd or $k$ is even, let $n(k,l)$ denote the largest integer $n$ such that each element of $A_n$ is a product of $k$ many $l$-cycles. In 2008, M. Herzog, G. Kaplan and A. Lev proved that if $k,l$ both ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b310051b7a4cdeb1f6994de08dcbb648
Autor:
Rijubrata Kundu, Sumit Chandra Mishra
In this article, we provide counterexamples to a conjecture of M. Pellegrini and P. Shumyatsky which states that each coset of the centralizer of an involution in a finite non-abelian simple group $G$ contains an odd order element, unless $G=\text{PS
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::614d376fb4e2fd1bae6f63bd1cf735cc
For a natural number $m$, a Lie algebra $L$ over a field $k$ is said to be of breadth type $(0, m)$ if the co-dimension of the centralizer of every non-central element is of dimension $m$. In this article, we classify finite dimensional nilpotent Lie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::109e995a8d149408e89448665204ad56
http://arxiv.org/abs/2111.04968
http://arxiv.org/abs/2111.04968
Let 𝐺 be a connected reductive group defined overFq\mathbb{F}_{q}. Fix an integerM≥2M\geq 2, and consider the power mapx↦xMx\mapsto x^{M}on 𝐺. We denote the image ofG(Fq)G(\mathbb{F}_{q})under this map byG(Fq)MG(\mathbb{F}_{q})^{M}and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f225be07972d31cc8b24bea1e2fcd9a