Zobrazeno 1 - 10
of 210
pro vyhledávání: '"Rigo, Pietro"'
Let $X=(X_1,\ldots,X_p)$ be a $p$-variate random vector and $F$ a fixed finite set. In a number of applications, mainly in genetics, it turns out that $X_i\in F$ for each $i=1,\ldots,p$. Despite the latter fact, to obtain a knockoff $\widetilde{X}$ (
Externí odkaz:
http://arxiv.org/abs/2410.09835
Let $\alpha_n(\cdot)=P\bigl(X_{n+1}\in\cdot\mid X_1,\ldots,X_n\bigr)$ be the predictive distributions of a sequence $(X_1,X_2,\ldots)$ of $p$-dimensional random vectors. Suppose $$\alpha_n= \mathcal{N} _p (M_n,Q_n)$$ where $M_n=\frac{1}{n}\sum_{i=1}^
Externí odkaz:
http://arxiv.org/abs/2403.16828
Autor:
Pratelli, Luca, Rigo, Pietro
Let $(\Omega,\mathcal{F})$ be a standard Borel space and $\mathcal{P}(\mathcal{F})$ the collection of all probability measures on $\mathcal{F}$. Let $E\subset\Omega\times\Omega$ be a measurable equivalence relation, that is, $E\in\mathcal{F}\otimes\m
Externí odkaz:
http://arxiv.org/abs/2311.08794
Let $X$ be a $p$-variate random vector and $\widetilde{X}$ a knockoff copy of $X$ (in the sense of \cite{CFJL18}). A new approach for constructing $\widetilde{X}$ (henceforth, NA) has been introduced in \cite{JSPI}. NA has essentially three advantage
Externí odkaz:
http://arxiv.org/abs/2212.09398
Given a sequence $X=(X_1,X_2,\ldots)$ of random observations, a Bayesian forecaster aims to predict $X_{n+1}$ based on $(X_1,\ldots,X_n)$ for each $n\ge 0$. To this end, in principle, she only needs to select a collection $\sigma=(\sigma_0,\sigma_1,\
Externí odkaz:
http://arxiv.org/abs/2208.06785
For each $n\ge 1$, let $X_{n,1},\ldots,X_{n,N_n}$ be real random variables and $S_n=\sum_{i=1}^{N_n}X_{n,i}$. Let $m_n\ge 1$ be an integer. Suppose $(X_{n,1},\ldots,X_{n,N_n})$ is $m_n$-dependent, $E(X_{ni})=0$, $E(X_{ni}^2)<\infty$ and $\sigma_n^2:=
Externí odkaz:
http://arxiv.org/abs/2208.06351
Autor:
Rigo, Pietro
Some classical mass transportation problems are investigated in a finitely additive setting. Let $\Omega=\prod_{i=1}^n\Omega_i$ and $\mathcal{A}=\otimes_{i=1}^n\mathcal{A}_i$, where $(\Omega_i,\mathcal{A}_i,\mu_i)$ is a ($\sigma$-additive) probabilit
Externí odkaz:
http://arxiv.org/abs/2206.01654
Let $X=(X_1,X_2,\ldots)$ be a sequence of random variables with values in a standard space $(S,\mathcal{B})$. Suppose \begin{gather*} X_1\sim\nu\quad\text{and}\quad P\bigl(X_{n+1}\in\cdot\mid X_1,\ldots,X_n\bigr)=\frac{\theta\nu(\cdot)+\sum_{i=1}^nK(
Externí odkaz:
http://arxiv.org/abs/2106.00114
Let $(X_n:n\ge 1)$ be a sequence of random observations. Let $\sigma_n(\cdot)=P\bigl(X_{n+1}\in\cdot\mid X_1,\ldots,X_n\bigr)$ be the $n$-th predictive distribution and $\sigma_0(\cdot)=P(X_1\in\cdot)$ the marginal distribution of $X_1$. In a Bayesia
Externí odkaz:
http://arxiv.org/abs/2104.11643
Let $\Lambda$ be the collection of all probability distributions for $(X,\widetilde{X})$, where $X$ is a fixed random vector and $\widetilde{X}$ ranges over all possible knockoff copies of $X$ (in the sense of \cite{CFJL18}). Three topics are develop
Externí odkaz:
http://arxiv.org/abs/2104.07752