Zobrazeno 1 - 10
of 323
pro vyhledávání: '"Rietbrock Andreas"'
Autor:
Forbriger, Thomas, Karamzadeh, Nasim, Azzola, Jérôme, Gaucher, Emmanuel, Widmer-Schnidrig, Rudolf, Rietbrock, Andreas
The power of distributed acoustic sensing (DAS) lies in its ability to sample deformation signals along an optical fiber at hundreds of locations with only one interrogation unit (IU). While the IU is calibrated to record 'fiber strain', the properti
Externí odkaz:
http://arxiv.org/abs/2408.01151
Autor:
Bornstein, Thomas, Lange, Dietrich, Münchmeyer, Jannes, Woollam, Jack, Rietbrock, Andreas, Barcheck, Grace, Grevemeyer, Ingo, Tilmann, Frederik
Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data machine learning methods have already found widespread adoption. However, deep lea
Externí odkaz:
http://arxiv.org/abs/2304.06635
Autor:
Lindner, Mike, Rietbrock, Andreas, Bie, Lidong, Goes, Saskia, Collier, Jenny, Rychert, Catherine, Harmon, Nicholas, Hicks, Stephen P., Henstock, Tim, group, the VoiLA working
In this paper, we perform full-waveform regional moment tensor (RMT) inversions, to gain insight into the stress distribution along the Lesser Antilles arc. We developed a novel inversion approach, AmPhiB - Amphibious Bayesian, taking into account un
Externí odkaz:
http://arxiv.org/abs/2206.05502
Autor:
Woollam, Jack, Van der Heiden, Vincent, Rietbrock, Andreas, Schurr, Bernd, Tilmann, Frederik, Dushi, Edmond
Machine Learning (ML) methods have demonstrated exceptional performance in recent years when applied to the task of seismic event detection. With numerous ML techniques now available for detecting seismicity, applying these methods in practice can he
Externí odkaz:
http://arxiv.org/abs/2205.12033
Autor:
Woollam, Jack, Münchmeyer, Jannes, Tilmann, Frederik, Rietbrock, Andreas, Lange, Dietrich, Bornstein, Thomas, Diehl, Tobias, Giunchi, Carlo, Haslinger, Florian, Jozinović, Dario, Michelini, Alberto, Saul, Joachim, Soto, Hugo
Machine Learning (ML) methods have seen widespread adoption in seismology in recent years. The ability of these techniques to efficiently infer the statistical properties of large datasets often provides significant improvements over traditional tech
Externí odkaz:
http://arxiv.org/abs/2111.00786
Autor:
Münchmeyer, Jannes, Woollam, Jack, Rietbrock, Andreas, Tilmann, Frederik, Lange, Dietrich, Bornstein, Thomas, Diehl, Tobias, Giunchi, Carlo, Haslinger, Florian, Jozinović, Dario, Michelini, Alberto, Saul, Joachim, Soto, Hugo
Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches and even achieve human-like perform
Externí odkaz:
http://arxiv.org/abs/2110.13671
Autor:
Comte, Diana, Farías, Marcelo, Calle-Gardella, Daniela, Navarro-Aranguiz, Andrea, Roecker, Steven, Rietbrock, Andreas
Publikováno v:
In Tectonophysics 5 January 2023 846
Autor:
Navarro-Aránguiz, Andrea, Comte, Diana, Farías, Marcelo, Roecker, Steven, Calle-Gardella, Daniela, Zhang, Haijiang, Gao, Lei, Rietbrock, Andreas
Publikováno v:
In Journal of South American Earth Sciences April 2022 115
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.