Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Riera, Armand"'
We develop an excursion theory that describes the evolution of a Markov process indexed by a Levy tree away from a regular and instantaneous point $x$ of the state space. The theory builds upon a notion of local time at $x$ that was recently introduc
Externí odkaz:
http://arxiv.org/abs/2411.12717
Self-similar Markov trees constitute a remarkable family of random compact real trees carrying a decoration function that is positive on the skeleton. As the terminology suggests, they are self-similar objects that further satisfy a Markov branching
Externí odkaz:
http://arxiv.org/abs/2407.07888
Autor:
Gall, Jean-François Le, Riera, Armand
We establish a new spatial Markov property of the Brownian half-plane. According to this property, if one removes a hull centered at a boundary point, the remaining space equipped with an intrinsic metric is still a Brownian half-plane, which is inde
Externí odkaz:
http://arxiv.org/abs/2404.18489
Autor:
Gall, Jean-François Le, Riera, Armand
We derive a new representation of the Brownian disk in terms of a forest of labeled trees, where labels correspond to distances from a subset of the boundary. We then use this representation to obtain a spatial Markov property showing that the comple
Externí odkaz:
http://arxiv.org/abs/2302.01138
We construct the analogue of the local time -- at a fixed point $x$ -- for Markov processes indexed by Levy trees. We start by proving that Markov processes indexed by Levy trees satisfy a special Markov property which can be thought as a spatial ver
Externí odkaz:
http://arxiv.org/abs/2205.04446
Autor:
Riera, Armand
We consider the model of the Brownian plane, which is a pointed non-compact random metric space with the topology of the complex plane. The Brownian plane can be obtained as the scaling limit in distribution of the uniform infinite planar triangulati
Externí odkaz:
http://arxiv.org/abs/2103.14573
Autor:
Gall, Jean-François Le, Riera, Armand
We provide a unified approach to the three main non-compact models of random geometry, namely the Brownian plane, the infinite-volume Brownian disk, and the Brownian half-plane. This approach allows us to investigate relations between these models, a
Externí odkaz:
http://arxiv.org/abs/2006.12066
Autor:
Gall, Jean-François Le, Riera, Armand
We derive several explicit distributions of functionals of Brownian motion indexed by the Brownian tree. In particular, we give a direct proof of a result of Bousquet-M\'elou and Janson identifying the distribution of the density at 0 of the integrat
Externí odkaz:
http://arxiv.org/abs/1812.09097
Autor:
Gall, Jean-François Le, Riera, Armand
We consider the model of Brownian motion indexed by the Brownian tree. For every $r\geq 0$ and every connected component of the set of points where Brownian motion is greater than $r$, we define the boundary size of this component, and we then show t
Externí odkaz:
http://arxiv.org/abs/1811.02825
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.