Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Riello, Aldo"'
Autor:
Freidel, Laurent, Riello, Aldo
Publikováno v:
2024 Class. Quantum Grav. 41 175013
In this paper, we provide a comprehensive study of asymptotically flat spacetime in even dimensions $d\geq 4$. We analyze the most general boundary condition and asymptotic symmetry compatible with Penrose's definition of asymptotic null infinity $\m
Externí odkaz:
http://arxiv.org/abs/2402.03097
Autor:
Riello, Aldo, Schiavina, Michele
Publikováno v:
Ann. Henri Poincar\'e (2024)
Soft symmetries for Yang-Mills theory are shown to correspond to the residual Hamiltonian action of the gauge group on the Ashtekar-Streubel phase space, which is the result of a partial symplectic reduction. The associated momentum map is the electr
Externí odkaz:
http://arxiv.org/abs/2303.03531
Autor:
Riello, Aldo, Schiavina, Michele
We study gauge theories on spacetime manifolds with a codimension-$1$ submanifold with boundary. We characterise the reduced phase space of the theory whenever it is described by a local momentum map for the action of the gauge group $\mathcal{G}$, b
Externí odkaz:
http://arxiv.org/abs/2207.00568
Autor:
Riello, Aldo
We discuss gauge theories of the Yang-Mills kind in finite regions with boundaries, and in particular the definition of the corresponding quasi-local degrees of freedom and their gluing upon composition of the underlying regions. Although the most of
Externí odkaz:
http://arxiv.org/abs/2104.10182
Autor:
Riello, Aldo
Publikováno v:
SciPost Phys. 10, 125 (2021)
I develop a theory of symplectic reduction that applies to bounded regions in Yang-Mills theory and electromagnetism. In this theory gauge-covariant superselection sectors for the electric flux through the boundary of the region play a central role:
Externí odkaz:
http://arxiv.org/abs/2010.15894
Autor:
Gomes, Henrique, Riello, Aldo
The eliminative view of gauge degrees of freedom -- the view that they arise solely from descriptive redundancy and are therefore eliminable from the theory -- is a lively topic of debate in the philosophy of physics. Recent work attempts to leverage
Externí odkaz:
http://arxiv.org/abs/2007.04013
We push forward the investigation of holographic dualities in 3D quantum gravity formulated as a topological quantum field theory, studying the correspondence between boundary and bulk structures. Working with the Ponzano-Regge topological state-sum
Externí odkaz:
http://arxiv.org/abs/1912.01968
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gomes, Henrique, Riello, Aldo
Publikováno v:
SciPost Phys. 10, 130 (2021)
Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. We employ geometric methods rooted in the functional geometry of the phase space of Yang-Mills theories to: (1) characterize a basis for quas
Externí odkaz:
http://arxiv.org/abs/1910.04222
Higher gauge theories play a prominent role in the construction of 4d topological invariants and have been long ago proposed as a tool for 4d quantum gravity. The Yetter lattice model and its continuum counterpart, the BFCG theory, generalize BF theo
Externí odkaz:
http://arxiv.org/abs/1908.05970