Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Riedler, Oskar"'
Autor:
Munn, Thomas Jack, Riedler, Oskar
In this note we study $(\lambda,\mu)$-eigenfamilies on compact Riemannian manifolds when $\lambda = \mu$. We show that any compact manifold admitting a $(\lambda,\lambda)$-eigenfunction is a mapping torus and that any $(\lambda,\lambda)$-eigenfamily
Externí odkaz:
http://arxiv.org/abs/2409.16932
Autor:
Riedler, Oskar, Siffert, Anna
We study globally defined $(\lambda,\mu)$-eigenfamilies on compact Riemannian manifolds. Among others, we provide (non-) existence results for such eigenfamilies, examine their topological properties and classify $(\lambda,\mu)$-eigenfamilies on flat
Externí odkaz:
http://arxiv.org/abs/2401.17750
Autor:
Riedler, Oskar
The eigenfamilies of Gudmundsson and Sakovich can be used to generate harmonic morphisms, proper $r$-harmonic maps, and minimal co-dimension $2$ submanifolds. This article begins by characterising the globally defined eigenfamilies of the sphere $S^m
Externí odkaz:
http://arxiv.org/abs/2310.19565
Autor:
Riedler, Oskar
Publikováno v:
Journal of Geometric Analysis 33, 172 (2023)
In this article we show the existence of closed embedded self-shrinkers in $\Bbb{R}^{n+1}$ that are topologically of type $S^1\times M$, where $M\subset S^n$ is any isoparametric hypersurface in $S^n$ for which the multiplicities of the principle cur
Externí odkaz:
http://arxiv.org/abs/2207.04851
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.